Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:
  • GE DS215LRPAG1AZZ01A Line Module Protection Board
    ❤ Add to collection
  • GE DS215LRPAG1AZZ01A Line Module Protection Board

    110V-380V
    5W-130W
    1A-30A
    1 year
    30
    United States, France, Japan, Viet Nam, Australia, Russia, Germany, Italy, Arabia

    GE DS215LRPAG1AZZ01A Line Module Protection Board

    • ¥34000.00
      ¥34670.00
      ¥34000.00
      ¥34000.00
    • Satisfaction:

      Sales: 0

      Review: 0

    Weight:3.400KG
    • Quantity:
    • (Inventory: 33)
Description

GE DS215LRPAG1AZZ01A Line Module Protection Board


GE DS215LRPAG1AZZ01A Line Module Protection Board

Part Number DS215LRPAG1AZZ01A Manufacturer General Electric Country of Manufacture As Per GE Manufacturing Policy Series Mark VI/VIe Function Module Availability In StockDS215LRPAG1AZZ01A is a line module protection board developed by GE. It is a part of EX2000 excitation system. This LRPAG1 is a specific product variant or model that is equipped with firmware. Firmware plays a crucial role in the operation and functionality of the device. 

Firmware refers to the software that is embedded within the hardware of the LRPAG1. It serves as a bridge between the hardware components and the user interface, enabling the device to perform its intended functions and tasks. Features Terminal Strips: It features four terminal strips on its leading edge. Each terminal connection on these strips is individually labeled, providing easy identification and connectivity options for external devices or components. 

Vertical Female Connector and Stab-On Connectors: In addition to the terminal strips, the board includes a vertical female connector and stab-on connectors. These connectors offer alternative methods for connecting and integrating external devices or components, providing flexibility in the setup and configuration of the board. Components: The board incorporates various components to support its functionality. These components include transformers, jumper switches, six heat sinks, potentiometers, resistor network arrays, high-voltage transistors mounted on heat sinks, LED indicators, a switch component, dozens of integrated circuits, relays, and mounting eyelets. Transformers: Transformers are utilized on the board to facilitate voltage transformations or isolation, ensuring proper power distribution and protection within the system. Jumper Switches: Jumper switches are present on the board, allowing users to customize or configure specific settings or functionalities according to their requirements. 

These switches can be adjusted or set to establish different connections or enable/disable specific features. Heat Sinks: Incorporates six heat sinks to dissipate heat generated by high-power components such as high-voltage transistors. The heat sinks help maintain optimal operating temperatures and prevent overheating, ensuring the reliability and longevity of the board. Potentiometers and Resistor Network Arrays: Potentiometers and resistor network arrays are included on the board to fine-tune or adjust specific parameters such as voltage levels, current flow, or signal characteristics. 

These components allow for precise control and customization of the board's behavior. LED Indicators and Switch Component: Features LED indicators that provide visual feedback or status indications for various system conditions or events. Additionally, a switch component is included, allowing users to control or trigger specific actions or operations on the board. Integrated Circuits: Dozens of integrated circuits (ICs) are incorporated into the board's design to perform various tasks, such as signal processing, data management, or control functions. These ICs contribute to the overall functionality and performance of the board. Relays and Mounting Eyelets: Relays are included on the board to enable switching or control of electrical signals or devices. Mounting eyelets are also present, providing secure attachment points for installing the board within the system or enclosure. 

 System Overview The system comprises a separate control simulator, which is a sophisticated system program integrated within the core software. This control simulator plays a crucial role in modeling the behavior of the field and generator, providing an accurate representation of their dynamics. Within the system, the microprocessor application card plays a key role in facilitating the simulation process. Instead of utilizing real-time feedback from the field and generator, signals that mimic the behavior of these components are generated and fed into the transducing algorithms. 

This simulation allows for comprehensive testing and analysis without relying on actual field and generator feedback. The control simulator takes into account the specific scaling requirements of the exciter for a particular generator. This ensures that the simulated signals accurately reflect the behavior of the system for that specific configuration. For example, during the start-up sequence in simulator mode, the OC2000 display on the front panel provides valuable information such as the exciter voltage and current, as well as the generator voltage for the specific generator being simulated. This information enables operators and technicians to monitor and verify the performance of the system during various stages of operation. The control simulator serves multiple purposes within the system. Firstly, it acts as a training tool, allowing operators and maintenance personnel to familiarize themselves with the behavior and response of the system without the need for real-world testing. Secondly, it facilitates the startup process by providing a controlled environment to verify and fine-tune the system's calibration. Lastly, the control simulator enables comprehensive calibration verification, ensuring that the system's measurements and responses align with expected values. 

By utilizing the control simulator as part of the system, operators and technicians can gain valuable insights, troubleshoot potential issues, and optimize the system's performance. This simulation capability enhances the overall functionality and reliability of the system, making it a valuable tool for training, calibration, and verification purposes. Product Attributes The board has been specifically designed to be used as a part of the EX2000 excitation system, which is a system that provides voltage regulation and control to generators in power plants. The board is designed to detect faults and disturbances on the power lines, and to quickly respond to them or taking other appropriate actions to prevent damage. In addition to its protection functions, the board is also responsible for providing real-time monitoring in the EX2000 system. This allows operators to quickly identify any issues that arise and take appropriate action to resolve them, minimizing the risk of damage to the system and preventing costly downtime.

  • User name Member Level Quantity Specification Purchase Date
  • Satisfaction :
No evaluation information
  • Honeywell Fusion4 MSC-L Multi Stream Loading Controller
  • Honeywell IPC 620-06 Programmable Controller
  • Honeywell Enhanced Micro TDC 3000 Control System
  • Honeywell Expert LS I/O System
  • Honeywell Expert PKS Universal Process Cabinet
  • KEBA KeConnect I/O: Modular Industrial Automation I/O System
  • KEBA FM 299/A GA1060 fieldbus main module
  • KEBA KeControl C1 CP 03x: Highly Integrated Embedded Industrial Controller
  • KEBA KeControl series controllers
  • KEBA KeConnect C5: High density modular IO system empowering industrial automation
  • KEBA DI 260/A Digital Input Module
  • Kollmorgen SERVOSTAR 600 (S600) series digital servo drive
  • Kollmorgen S300 Servo Drive Application Guide
  • Kollmorgen H series brushless servo motor and Silverline driver
  • Kollmorgen Servo System Product Guide
  • KOLLMORGEN S200 High Performance Compact Brushless Servo Drive
  • KOLLMORGEN IDC EC Series Electric Cylinder Configuration and Application Guide
  • Selection and Application of KOLLMORGEN E/H Series Stepper Motor
  • Kollmorgen AKD/S700 series servo drive
  • KOLLMORGEN Digifas-7200 Digital Servo Amplifier Application Guide
  • Kollmorgen SERVOSTAR-CD servo drive hardware installation and system configuration
  • MOOG QAIO 16/4 Analog I/O Module Technology Analysis and Application Guide
  • MOOG G128-809A DIN rail power supply
  • MOOG MSD Multi Axis Servo Drive System (DC-AC)
  • MOOG DM2020 Multi axis Servo Drive
  • MOOG M3000 ® Control system and MSC servo controller
  • MOOG G123-825-001 DIN rail buffer amplifier
  • MOOG Servo Electronics Products
  • MOOG T161 Series Rack Mount Digital Brushless Motor Controller
  • Motorola PTX series (PTX700/760/780) portable walkie talkies
  • MOTOROLA MVME2400 series VME processor module
  • MOTOROLA CPCI-6020 CompactPCI Single Board Computer
  • Motorola MVME162 Embedded Controller
  • Reliance Electric Engineering Drive System and DBU Dynamic Braking Unit
  • RELIANCE ELECTRIC INVERTRON DBU Dynamic Braking Unit
  • Reliance 57C413B/57C423 common memory module
  • Rockwell Automation AutoMax™ Distributed Power System
  • Reliance Electric AutoMax Programming Executive V3.5
  • Deep Analysis and Industrial Control Application of Reliance DCS 5000 Enhanced BASIC Language
  • Rockwell Automation MD60 AC Drive
  • COTEK SD Series Pure Sine Wave Inverter
  • RELIANCE ELECTRICI GV3000/SE AC General Purpose (Volts/Hertz) and Vector Duty Drive Version 6.06
  • ABB SACO16D1 Alarm Display Application Guide
  • REXROTH Indramat PPC-R Modular Controller Application Guide
  • REXROTH EcoDrive Cs series AC servo drive system
  • REXROTH IndraControl VEP Embedded Terminal Project Planning and Operation Guide
  • REXROTH IndraDyn S MSK series synchronous servo motor
  • REXROTH 4WRPEH series Directional control valves
  • REXROTH WE 6X series directional valve
  • REXROTH VT-HNC100... 3X Series Digital Axis Controller
  • REXROTH BTV04.2 Micro Control Panel Functions and Applications
  • REXROTH MKD Explosion proof Synchronous Motor Application Guide
  • REXROTH 4WRTE type electro-hydraulic proportional directional valve
  • REXRTOH IndraControl VDP series operation display
  • REXRTOH MSK series synchronous servo motor
  • REXRTOH ECODRIVE DKC Series Drive Controller Comprehensive Fault Diagnosis and Maintenance Guide
  • REXRTOH IndraDrive HMV01 series power supply unit
  • REXRTOH SE 200 Electric Tool Controller Details
  • REXRTOH INDRAMAT RAC 2 Spindle Drive Controller Application Guide
  • REXRTOH CDH1/CGH1/CSH1 series milling machine type hydraulic cylinder
  • REXRTOH MDD Digital AC Servo Motor Application Guide
  • REXRTOH DIAX04 Second Generation Driver Controller Application Guide
  • REXRTOH EcoDrive 03 Drive Controller
  • REXRTOH IndraDrive Controller CS Series Technical Analysis and Application Guide
  • REXRTOH A4VG series 40 axial piston variable displacement pump application guide
  • REXRTOH DDS02.1/03.1 Digital AC Servo Drive
  • REXRTOH VT-HPC Digital Pump Control
  • REXRTOH HNC100-3X Electro hydraulic Motion Control
  • ABB Advant Controller 250 Modular Controller
  • ABB QABP Low Voltage High Efficiency Variable Frequency Motor Application Guide
  • ABB Conductivity Analyzer Application Guide
  • ABB S500 Distributed Remote I/O System
  • ABB AC500 PLC Module Wiring Guide
  • ABB REG216 Digital Generator Protection System
  • Siemens SIRIUS Domestic Control and Protection System
  • Analysis and Application of Siemens SMART LINE V5 HMI Technology
  • SIEMENS CP 5613 A2/CP 5614 A2 Communication Processor
  • SIEMENS SIMOVERT MASTERDRIVES Vector Control Series
  • Siemens 5SN series terminal power distribution products: safe, efficient, and compact electrical solutions
  • Siemens SENTRON 5SY6106-7 miniature circuit breaker
  • Technical Analysis and Application Guide for Siemens SIMATIC TI505/TI500 MODNIM Module
  • Comprehensive Analysis and Configuration Guide for Siemens ET200SP Distributed I/O System
  • Technical Analysis and Application Guide for Siemens EG Frame Molded Case Circuit Breaker NEB/HEB Series
  • Siemens SENTRON 5SY Series Terminal Distribution Products Full Analysis: Innovative Technologies and Application Solutions
  • SIEMENS SIPROTEC 4 System: A Comprehensive Solution for Power Protection and Automation
  • Integration and Application of Siemens SIMO-MM3 Driver Control Block in PCS7 System
  • SINAMICS A10: Intelligent Servo Drive System with Integrated Safety and Efficient Debugging
  • Siemens SITOP UPS 1600/UPS 1100: High reliability DC uninterruptible power supply system for industrial automation
  • Comprehensive Analysis and Selection Guide for Siemens SICAM 8 Substation Automation Platform
  • Siemens SENTRON intelligent circuit protection equipment: full analysis of communication, measurement, and digital management
  • Siemens MOBY I RFID System Configuration and Application Guide
  • SIEMENS S7-1413 Communication Software Architecture and Application Detailed Explanation
  • SIEMENS SINUMERIK System 800 General Interface Technology Explanation and Configuration Guide
  • Siemens SINUMERIK 840C CNC System Installation and Debugging Guide
  • SIEMENS SIMATIC S5-115U Programmable Controller Comprehensive Analysis and Professional Application Guide
  • SIEMENS SIMATIC RF120C Communication Module Comprehensive Analysis and Application Guide
  • Comprehensive analysis and detailed explanation of key technologies for SIEMENS SIMADYN D hardware system
  • Comprehensive Analysis of Siemens TP/OP 170 Series Touch Screen and Operation Panel
  • SIMATIC MODNIM Module Deep Analysis: A Reliable Bridge for Industrial Modbus Communication
  • Comprehensive Analysis and Application Guide for SIEMENS S7-PLCSIM Advanced Simulation Software
  • Technical Analysis and Professional Operation Guide for SIEMENS 1FK6 Servo Motor
  • SIEMENS S7-300 PLC Beginner's Practice: From Hardware Installation to Program Debugging
  • In depth analysis and selection guide for SIEMENS 3AH3 vacuum circuit breaker technology
  • TEKTRONIX MSO5000 and DPO5000 series mixed signal oscilloscope
  • TOSHIBA DI Series Split Air Conditioner
  • TEKTRONIX 5A18N Dual Trace Amplifier
  • Toshiba Discrete IGBTs: Core Architecture, Technological Evolution, and Application Details
  • Foxboro G66 Triconex Tricon Termination Enclosure
  • Triconex Tricon v9-v11 fault-tolerant control system: triple module redundant architecture and high availability design
  • Tricon Triple-Modular Redundant Controller: TMR Architecture for Critical Process Safety
  • Triconex and Pepperl+Fuchs security solutions
  • TRICONEX Trident Controller
  • Woodward EM-80/EM-300 Electric Actuator Specification Guide
  • Woodward EM-80/EM-300 actuator system
  • SCHNEIDER Electric Magelis XBT Series HMI Product Comprehensive Guide and Technical Analysis
  • SCHNEIDER Magelis range Graphic XBT-F / TXBT-F Instruction Manual
  • SCHNEIDER XB2-B Ø 22mm series buttons, selection switches, and indicator lights
  • SCHNEIDER APC Back-UPS Pro Premium battery backup and surge protection for your critical devices
  • SCHNEIDER APC Back UPS Pro Series Uninterruptible Power Supply Complete Usage and Configuration Guide
  • User Guide for SCHNEIDER Service Interface (Part Number LV485500)
  • SCHNEIDER PowerPact ™ H. Modbus Communication User Guide for J and L-type Circuit Breakers
  • SCHNEIDER TeSys D Green series AC/DC universal contactor
  • SCHNEIDER mart series low-voltage distribution products
  • SCHNEIDER TeSys ® GV2/GV3 series motor circuit breakers
  • Schneider Electric ComPacT NSX DC Circuit Breaker Full Solution and Application Guide
  • SCHNEIDER Resi9 The ultimate in residential circuit protection
  • SCHNEIDER Modicon Premium Automation Platform and Unity Software
  • SCHNEIDER Quantum Safety PLC: Complete Analysis of SIL3 Safety Control System