Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:
  • Foxboro I/A Series DCS for Feedwater Control Systems
    ❤ Add to collection
  • Foxboro I/A Series DCS for Feedwater Control Systems

    Foxboro I/A Series DCS for Feedwater Control Systems

    • ¥25566.00
      ¥25569.00
      ¥25566.00
      ¥25566.00
    • Satisfaction:

      Sales: 0

      Review: 0

    Weight:3.600KG
    • Quantity:
    • (Inventory: 36)
Description

Foxboro I/A Series DCS for Feedwater Control Systems


Foxboro I/A Series DCS for Feedwater Control Systems

THE COMPETITIVE ADVANTAGE

Invensys Operations Management offers premiere feedwater control systems using the Foxboro® I/A Series® Distributed Control System (DCS). Recent implementations have offered operation philosophy enhancements, improved startup and runtime performance and significant reduction of unplanned unit trip outages.

These advanced control techniques allow for less operator required interaction, more time of automatic control - including during start-up and shut-down when most unit trips are caused - making the entire control system more capable of handling process upset conditions along with normal operation.

BEFORE I/A SERIES AT THE OMAHA PUBLIC POWER DISTRICT

Before the I/A Series DCS was installed on the feedwater controls at the Omaha Public Power District at Fort Calhoun Station, there were many operational challenges. The controls were poorly tuned. Level perturbations were not uncommon during changes in power, with poor low level control.

John Steinke, Senior Nuclear Design Engineer at the facility states that “Having splitrange 3-Element control on the bypass feed water valve as well as the main valve allowed for automated controls to handle the switchover from the bypass to the main valve. This reduced operator direct manual interaction, and thereby reduced operator challenges. We also rotate our Steam Generator Feedwater Pumps. The split range 3-element controls greatly reduce the perturbations associated with rotating those pumps. More precise tuning and control have maximized our unit’s capability factor (ability to produce electricity) while removing undue burden from the Licensed Operators who are operating the system. To date, we have not tripped based on the DCS or garnered extra down time.”

There was a plant transient soon after the controls were installed in which the Hotwell Makeup Valve failed to open. The operators, by that time, overcame their instinct to place the feedwater system in manual, and instead let the controls take action. The feedwater DCS response was called “outstanding.” It would have been a much more stressful event for operations using the pre-DCS controls. There have been multiple similar incidents after which Operations commented that the unit would have tripped if the steam generator level control was not on the DCS.

AFTER I/A SERIES AT TENNESSEE VALLEY AUTHORITY

Scott Gladney, an Electric Engineer at the Tennessee Valley Authority’s Sequoyah facility, attributes smoother operations and the reduction of single points-of-failure to installation of the DCS and feedwater controls.

Mr. Gladney states that “We were able to eliminate over 40 single points-of-failure per unit using the DCS feedwater controls. It also simplified the startup of our second feedwater pump. When starting the second pump, speed balancing used to be an operator-intensive manual procedure. The I/A Series block features allow for the controls to completely balance the pumps in automatic. Our swap over from startup valve to main valve was greatly simplified. It used to be an operator manual swap that took about an hour to perform. It is now an automatic event that occurs on they fly with no specific interaction required. I have seen a valve transfer occur as they were tying a turbine online (and in single element) with no significant level perturbations in the steam generators.”

FEEDWATER CONTROL SYSTEM ENHANCEMENTS

The following are brief descriptions of some of the control enhancements delivered for various feedwater control systems throughout the nuclear industry by the nuclear control system engineering team of Invensys Operations Management.

Enhancement #1 − Redundant Sensor Algorithms

Redundant Sensor Algorithms (RSAs) are utilized to eliminate single point of failure vulnerabilities within the control application and improve reliability and robustness of the system and its ability to automatically control the plant over its full power range for the entire fuel cycle. These allow the system to suffer a partial or complete loss of one of the redundant input signals with minimal or no upset to plant operation or loss of vital plant process information. The redundancy starts at the process measurement transmitters. Multiple, mutually exclusive field devices are used to measure the same plant process variable. These measurements are brought into the control system on separate I/O devices (FBMs), further increasing the reliability of these signals. Care is taken to also ensure that the transmitters are on separate process connections, otherwise they are still vulnerable to a single failure, such as plugged piping or failure of the sensing line piping itself.

Enhancement #2 − Redundant Valve Outputs

Redundant Valve Outputs are utilized to eliminate single point of failure vulnerabilities within the control application and improve reliability and robustness of the system and its ability to automatically control the plant over its full power range for the entire fuel cycle. The I/A Series Fieldbus Modules include the FBM218, which is capable of providing redundant, channel isolated outputs to field devices. If a failure is detected in one of the Fieldbus Modules, its output is driven to 0 mA and the corresponding channel in the tracking module automatically continues supplying the proper current to the output current loop.

Enhancement #3 − Fully Integrated Single Element/Three Element Control Philosophy

Traditionally, the feedwater control system operated in Single Element control at low power using only the Startup Bypass valve to maintain Steam Generator Level. Above ~25% power, a Three Element system was employed using only the Main Feedwater Regulating (MFWR) valve. Steam generator level is more robustly controlled using the three elements of steam flow, feedwater flow, and steam generator level. As reactor power increased from 20% to 25%, operators would perform a manual transfer from the Single Element Start-up Bypass valve to the Three Element MFWR valve. Similarly, as reactor power would decrease from 25 to 20%, operators manually transferred from the Three Element MFWR valve back to the Single Element Start-up Bypass valve. These manual transitions require intense operator involvement, and have been the cause of many unplanned unit trips.

  • User name Member Level Quantity Specification Purchase Date
  • Satisfaction :
No evaluation information
  • Honeywell Fusion4 MSC-L Multi Stream Loading Controller
  • Honeywell IPC 620-06 Programmable Controller
  • Honeywell Enhanced Micro TDC 3000 Control System
  • Honeywell Expert LS I/O System
  • Honeywell Expert PKS Universal Process Cabinet
  • KEBA KeConnect I/O: Modular Industrial Automation I/O System
  • KEBA FM 299/A GA1060 fieldbus main module
  • KEBA KeControl C1 CP 03x: Highly Integrated Embedded Industrial Controller
  • KEBA KeControl series controllers
  • KEBA KeConnect C5: High density modular IO system empowering industrial automation
  • KEBA DI 260/A Digital Input Module
  • Kollmorgen SERVOSTAR 600 (S600) series digital servo drive
  • Kollmorgen S300 Servo Drive Application Guide
  • Kollmorgen H series brushless servo motor and Silverline driver
  • Kollmorgen Servo System Product Guide
  • KOLLMORGEN S200 High Performance Compact Brushless Servo Drive
  • KOLLMORGEN IDC EC Series Electric Cylinder Configuration and Application Guide
  • Selection and Application of KOLLMORGEN E/H Series Stepper Motor
  • Kollmorgen AKD/S700 series servo drive
  • KOLLMORGEN Digifas-7200 Digital Servo Amplifier Application Guide
  • Kollmorgen SERVOSTAR-CD servo drive hardware installation and system configuration
  • MOOG QAIO 16/4 Analog I/O Module Technology Analysis and Application Guide
  • MOOG G128-809A DIN rail power supply
  • MOOG MSD Multi Axis Servo Drive System (DC-AC)
  • MOOG DM2020 Multi axis Servo Drive
  • MOOG M3000 ® Control system and MSC servo controller
  • MOOG G123-825-001 DIN rail buffer amplifier
  • MOOG Servo Electronics Products
  • MOOG T161 Series Rack Mount Digital Brushless Motor Controller
  • Motorola PTX series (PTX700/760/780) portable walkie talkies
  • MOTOROLA MVME2400 series VME processor module
  • MOTOROLA CPCI-6020 CompactPCI Single Board Computer
  • Motorola MVME162 Embedded Controller
  • Reliance Electric Engineering Drive System and DBU Dynamic Braking Unit
  • RELIANCE ELECTRIC INVERTRON DBU Dynamic Braking Unit
  • Reliance 57C413B/57C423 common memory module
  • Rockwell Automation AutoMax™ Distributed Power System
  • Reliance Electric AutoMax Programming Executive V3.5
  • Deep Analysis and Industrial Control Application of Reliance DCS 5000 Enhanced BASIC Language
  • Rockwell Automation MD60 AC Drive
  • COTEK SD Series Pure Sine Wave Inverter
  • RELIANCE ELECTRICI GV3000/SE AC General Purpose (Volts/Hertz) and Vector Duty Drive Version 6.06
  • ABB SACO16D1 Alarm Display Application Guide
  • REXROTH Indramat PPC-R Modular Controller Application Guide
  • REXROTH EcoDrive Cs series AC servo drive system
  • REXROTH IndraControl VEP Embedded Terminal Project Planning and Operation Guide
  • REXROTH IndraDyn S MSK series synchronous servo motor
  • REXROTH 4WRPEH series Directional control valves
  • REXROTH WE 6X series directional valve
  • REXROTH VT-HNC100... 3X Series Digital Axis Controller
  • REXROTH BTV04.2 Micro Control Panel Functions and Applications
  • REXROTH MKD Explosion proof Synchronous Motor Application Guide
  • REXROTH 4WRTE type electro-hydraulic proportional directional valve
  • REXRTOH IndraControl VDP series operation display
  • REXRTOH MSK series synchronous servo motor
  • REXRTOH ECODRIVE DKC Series Drive Controller Comprehensive Fault Diagnosis and Maintenance Guide
  • REXRTOH IndraDrive HMV01 series power supply unit
  • REXRTOH SE 200 Electric Tool Controller Details
  • REXRTOH INDRAMAT RAC 2 Spindle Drive Controller Application Guide
  • REXRTOH CDH1/CGH1/CSH1 series milling machine type hydraulic cylinder
  • REXRTOH MDD Digital AC Servo Motor Application Guide
  • REXRTOH DIAX04 Second Generation Driver Controller Application Guide
  • REXRTOH EcoDrive 03 Drive Controller
  • REXRTOH IndraDrive Controller CS Series Technical Analysis and Application Guide
  • REXRTOH A4VG series 40 axial piston variable displacement pump application guide
  • REXRTOH DDS02.1/03.1 Digital AC Servo Drive
  • REXRTOH VT-HPC Digital Pump Control
  • REXRTOH HNC100-3X Electro hydraulic Motion Control
  • ABB Advant Controller 250 Modular Controller
  • ABB QABP Low Voltage High Efficiency Variable Frequency Motor Application Guide
  • ABB Conductivity Analyzer Application Guide
  • ABB S500 Distributed Remote I/O System
  • ABB AC500 PLC Module Wiring Guide
  • ABB REG216 Digital Generator Protection System
  • Siemens SIRIUS Domestic Control and Protection System
  • Analysis and Application of Siemens SMART LINE V5 HMI Technology
  • SIEMENS CP 5613 A2/CP 5614 A2 Communication Processor
  • SIEMENS SIMOVERT MASTERDRIVES Vector Control Series
  • Siemens 5SN series terminal power distribution products: safe, efficient, and compact electrical solutions
  • Siemens SENTRON 5SY6106-7 miniature circuit breaker
  • Technical Analysis and Application Guide for Siemens SIMATIC TI505/TI500 MODNIM Module
  • Comprehensive Analysis and Configuration Guide for Siemens ET200SP Distributed I/O System
  • Technical Analysis and Application Guide for Siemens EG Frame Molded Case Circuit Breaker NEB/HEB Series
  • Siemens SENTRON 5SY Series Terminal Distribution Products Full Analysis: Innovative Technologies and Application Solutions
  • SIEMENS SIPROTEC 4 System: A Comprehensive Solution for Power Protection and Automation
  • Integration and Application of Siemens SIMO-MM3 Driver Control Block in PCS7 System
  • SINAMICS A10: Intelligent Servo Drive System with Integrated Safety and Efficient Debugging
  • Siemens SITOP UPS 1600/UPS 1100: High reliability DC uninterruptible power supply system for industrial automation
  • Comprehensive Analysis and Selection Guide for Siemens SICAM 8 Substation Automation Platform
  • Siemens SENTRON intelligent circuit protection equipment: full analysis of communication, measurement, and digital management
  • Siemens MOBY I RFID System Configuration and Application Guide
  • SIEMENS S7-1413 Communication Software Architecture and Application Detailed Explanation
  • SIEMENS SINUMERIK System 800 General Interface Technology Explanation and Configuration Guide
  • Siemens SINUMERIK 840C CNC System Installation and Debugging Guide
  • SIEMENS SIMATIC S5-115U Programmable Controller Comprehensive Analysis and Professional Application Guide
  • SIEMENS SIMATIC RF120C Communication Module Comprehensive Analysis and Application Guide
  • Comprehensive analysis and detailed explanation of key technologies for SIEMENS SIMADYN D hardware system
  • Comprehensive Analysis of Siemens TP/OP 170 Series Touch Screen and Operation Panel
  • SIMATIC MODNIM Module Deep Analysis: A Reliable Bridge for Industrial Modbus Communication
  • Comprehensive Analysis and Application Guide for SIEMENS S7-PLCSIM Advanced Simulation Software
  • Technical Analysis and Professional Operation Guide for SIEMENS 1FK6 Servo Motor
  • SIEMENS S7-300 PLC Beginner's Practice: From Hardware Installation to Program Debugging
  • In depth analysis and selection guide for SIEMENS 3AH3 vacuum circuit breaker technology
  • TEKTRONIX MSO5000 and DPO5000 series mixed signal oscilloscope
  • TOSHIBA DI Series Split Air Conditioner
  • TEKTRONIX 5A18N Dual Trace Amplifier
  • Toshiba Discrete IGBTs: Core Architecture, Technological Evolution, and Application Details
  • Foxboro G66 Triconex Tricon Termination Enclosure
  • Triconex Tricon v9-v11 fault-tolerant control system: triple module redundant architecture and high availability design
  • Tricon Triple-Modular Redundant Controller: TMR Architecture for Critical Process Safety
  • Triconex and Pepperl+Fuchs security solutions
  • TRICONEX Trident Controller
  • Woodward EM-80/EM-300 Electric Actuator Specification Guide
  • Woodward EM-80/EM-300 actuator system
  • SCHNEIDER Electric Magelis XBT Series HMI Product Comprehensive Guide and Technical Analysis
  • SCHNEIDER Magelis range Graphic XBT-F / TXBT-F Instruction Manual
  • SCHNEIDER XB2-B Ø 22mm series buttons, selection switches, and indicator lights
  • SCHNEIDER APC Back-UPS Pro Premium battery backup and surge protection for your critical devices
  • SCHNEIDER APC Back UPS Pro Series Uninterruptible Power Supply Complete Usage and Configuration Guide
  • User Guide for SCHNEIDER Service Interface (Part Number LV485500)
  • SCHNEIDER PowerPact ™ H. Modbus Communication User Guide for J and L-type Circuit Breakers
  • SCHNEIDER TeSys D Green series AC/DC universal contactor
  • SCHNEIDER mart series low-voltage distribution products
  • SCHNEIDER TeSys ® GV2/GV3 series motor circuit breakers
  • Schneider Electric ComPacT NSX DC Circuit Breaker Full Solution and Application Guide
  • SCHNEIDER Resi9 The ultimate in residential circuit protection
  • SCHNEIDER Modicon Premium Automation Platform and Unity Software
  • SCHNEIDER Quantum Safety PLC: Complete Analysis of SIL3 Safety Control System