Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:
  • Foxboro I/A Series DCS for Feedwater Control Systems
    ❤ Add to collection
  • Foxboro I/A Series DCS for Feedwater Control Systems

    Foxboro I/A Series DCS for Feedwater Control Systems

    • ¥25566.00
      ¥25569.00
      ¥25566.00
      ¥25566.00
    • Satisfaction:

      Sales: 0

      Review: 0

    Weight:3.600KG
    • Quantity:
    • (Inventory: 36)
Description

Foxboro I/A Series DCS for Feedwater Control Systems


Foxboro I/A Series DCS for Feedwater Control Systems

THE COMPETITIVE ADVANTAGE

Invensys Operations Management offers premiere feedwater control systems using the Foxboro® I/A Series® Distributed Control System (DCS). Recent implementations have offered operation philosophy enhancements, improved startup and runtime performance and significant reduction of unplanned unit trip outages.

These advanced control techniques allow for less operator required interaction, more time of automatic control - including during start-up and shut-down when most unit trips are caused - making the entire control system more capable of handling process upset conditions along with normal operation.

BEFORE I/A SERIES AT THE OMAHA PUBLIC POWER DISTRICT

Before the I/A Series DCS was installed on the feedwater controls at the Omaha Public Power District at Fort Calhoun Station, there were many operational challenges. The controls were poorly tuned. Level perturbations were not uncommon during changes in power, with poor low level control.

John Steinke, Senior Nuclear Design Engineer at the facility states that “Having splitrange 3-Element control on the bypass feed water valve as well as the main valve allowed for automated controls to handle the switchover from the bypass to the main valve. This reduced operator direct manual interaction, and thereby reduced operator challenges. We also rotate our Steam Generator Feedwater Pumps. The split range 3-element controls greatly reduce the perturbations associated with rotating those pumps. More precise tuning and control have maximized our unit’s capability factor (ability to produce electricity) while removing undue burden from the Licensed Operators who are operating the system. To date, we have not tripped based on the DCS or garnered extra down time.”

There was a plant transient soon after the controls were installed in which the Hotwell Makeup Valve failed to open. The operators, by that time, overcame their instinct to place the feedwater system in manual, and instead let the controls take action. The feedwater DCS response was called “outstanding.” It would have been a much more stressful event for operations using the pre-DCS controls. There have been multiple similar incidents after which Operations commented that the unit would have tripped if the steam generator level control was not on the DCS.

AFTER I/A SERIES AT TENNESSEE VALLEY AUTHORITY

Scott Gladney, an Electric Engineer at the Tennessee Valley Authority’s Sequoyah facility, attributes smoother operations and the reduction of single points-of-failure to installation of the DCS and feedwater controls.

Mr. Gladney states that “We were able to eliminate over 40 single points-of-failure per unit using the DCS feedwater controls. It also simplified the startup of our second feedwater pump. When starting the second pump, speed balancing used to be an operator-intensive manual procedure. The I/A Series block features allow for the controls to completely balance the pumps in automatic. Our swap over from startup valve to main valve was greatly simplified. It used to be an operator manual swap that took about an hour to perform. It is now an automatic event that occurs on they fly with no specific interaction required. I have seen a valve transfer occur as they were tying a turbine online (and in single element) with no significant level perturbations in the steam generators.”

FEEDWATER CONTROL SYSTEM ENHANCEMENTS

The following are brief descriptions of some of the control enhancements delivered for various feedwater control systems throughout the nuclear industry by the nuclear control system engineering team of Invensys Operations Management.

Enhancement #1 − Redundant Sensor Algorithms

Redundant Sensor Algorithms (RSAs) are utilized to eliminate single point of failure vulnerabilities within the control application and improve reliability and robustness of the system and its ability to automatically control the plant over its full power range for the entire fuel cycle. These allow the system to suffer a partial or complete loss of one of the redundant input signals with minimal or no upset to plant operation or loss of vital plant process information. The redundancy starts at the process measurement transmitters. Multiple, mutually exclusive field devices are used to measure the same plant process variable. These measurements are brought into the control system on separate I/O devices (FBMs), further increasing the reliability of these signals. Care is taken to also ensure that the transmitters are on separate process connections, otherwise they are still vulnerable to a single failure, such as plugged piping or failure of the sensing line piping itself.

Enhancement #2 − Redundant Valve Outputs

Redundant Valve Outputs are utilized to eliminate single point of failure vulnerabilities within the control application and improve reliability and robustness of the system and its ability to automatically control the plant over its full power range for the entire fuel cycle. The I/A Series Fieldbus Modules include the FBM218, which is capable of providing redundant, channel isolated outputs to field devices. If a failure is detected in one of the Fieldbus Modules, its output is driven to 0 mA and the corresponding channel in the tracking module automatically continues supplying the proper current to the output current loop.

Enhancement #3 − Fully Integrated Single Element/Three Element Control Philosophy

Traditionally, the feedwater control system operated in Single Element control at low power using only the Startup Bypass valve to maintain Steam Generator Level. Above ~25% power, a Three Element system was employed using only the Main Feedwater Regulating (MFWR) valve. Steam generator level is more robustly controlled using the three elements of steam flow, feedwater flow, and steam generator level. As reactor power increased from 20% to 25%, operators would perform a manual transfer from the Single Element Start-up Bypass valve to the Three Element MFWR valve. Similarly, as reactor power would decrease from 25 to 20%, operators manually transferred from the Three Element MFWR valve back to the Single Element Start-up Bypass valve. These manual transitions require intense operator involvement, and have been the cause of many unplanned unit trips.

  • User name Member Level Quantity Specification Purchase Date
  • Satisfaction :
No evaluation information
  • Yokogawa AQ6377E Optical Spectrum Analyzer Remote Control
  • Yokogawa AQ6361 Optical Spectrum Analyzer
  • Yokogawa IS8000 Integrated Software ECU Monitoring and Synchronization Function
  • Yokogawa ROTAMASS TI Coriolis Mass Flow Meter
  • Yokogawa ROTOMETER RAMC Metal Variable Area Flow Meter
  • Yokogawa SL1000 high-speed data acquisition unit input module
  • How to install and wire the Yokogawa FLXA402T turbidity and chlorine liquid analyzer?
  • Yokogawa WTB10-DO Series Dissolved Oxygen Measurement System Terminal Box
  • Yokogawa Model 702928 PBD0200 Differential Probe
  • YOKOGAWA ADMAG TI Series AXW Electromagnetic Flow Meter (25-450mm) Installation and Operation
  • How to troubleshoot YOKOGAWA ADMAG TI series AXW electromagnetic flowmeter (25-1800mm)?
  • How to install YOKOGAWA DO30G dissolved oxygen sensor?
  • YOKOGAWA SC4AJ Conductivity Sensor Manual
  • YOKOGAWA SC210G Conductivity Detector
  • How to install and wire Yokogawa PH4/OR4 series pH and ORP sensor (IM12B10B00-01EN)?
  • How to troubleshoot Yokogawa OR8EFG KCl filled ORP sensor (IM12C07J01-01E)?
  • YOKOGAWA FU24 pH/ORP Composite Sensor with Pressure Compensation (IM 12B06J03-03EN-P)
  • Yokogawa SC200 Intelligent Two Wire Conductivity Transmitter System (IM12D08B01-01E)
  • YOKOGAWA CENTUM VP Integrated Production Control System (TI33J01A10-01EN)
  • ABB AO2000-LS25 Laser Analysts User Manual
  • YOKOGAWA FA-M3 positioning module (with analog voltage output)
  • YOKOGAWA FA-M3 Series Basic Modules
  • YOKOGAWA EJA110E Diff erential Pressure Transmitter
  • Zygo 3D Optical Profiler
  • How to unpack and install the Zygo Mark II 4-inch interferometer system?
  • Zygo NewView 9000 3D Optical Profilometer Technology Advantages
  • Zygo NewView 9000 3D Optical Profilometer Technology
  • Zygo Profilometer Standard Operating Procedure
  • Zygo’s Guide to Typical Interferometer Setups
  • ZYGO Laser Interferometer Accessory Guide OMP-0463AM
  • ZYGO MetroPro 9.0 Reference Guide (OMP-0347M)
  • Zygo Device Standard Operating Procedure (SOP)
  • Zygo Verify Laser Interferometer Product Highlights
  • Zygo MicroLUPI Micro Hole Diameter Laser Unequal Path Interferometer
  • ZYGO ZMI-1000 Displacement Measuring Interferometer System
  • Zygo’s ZMI 2000 System Displacement Measuring Interferometer Systems
  • ABB IGCT Technology: A Revolutionary Breakthrough in High Voltage Inverters
  • Siemens 6AG1204-2BB10-4AA3 Ethernet Switch
  • Siemens 6ES7193-4JA00-0AA0 Terminal Module
  • Siemens ET200SP 6ES7193-6PA00-0AA0 server module
  • Siemens 6ES7231-0HC22-0XA0 Analog Input Expansion Module
  • Siemens 6ES7350-2AH01-0AE0 Counter Module
  • Siemens 6ES7421-7DH00-0AB0 Digital Input Module
  • Siemens 6AV2124-2DC01-0AX0 Comfort Panel
  • Siemens 6ES7193-4CA40-0AA0 ET 200S Electronic Module
  • STOBER POSIDRIVE ® How to install MDS 5000?
  • Siemens 7XV5653-0BA00 dual channel binary signal transmitter
  • Thinklogical Velocity KVM-34 series KVM fiber extender
  • Watlow MLS300 Series Controller
  • ​DHR NLS3000 NLC System (Navigation Control System)
  • Watlow Anafaze CLS200 Series Controller
  • CyberPower UT650EG / UT850EG User’s Manual
  • Thermal Solutions EVS series gas regulated boilers
  • Bosch Rexroth HM20 Hydraulic Pressure Sensor
  • ABB SPAU 341 C Voltage Regulator
  • Rockwell Automation 1585 Ethernet Media
  • Rockwell Automation SmartGuard 600 Controller
  • Rockwell Automation 1756 ControlLogix Communication Module
  • Rockwell Automation Stratix series Ethernet devices
  • A-B Ultra3000 and Ultra5000 with DeviceNet
  • ABB INNIS21 Network Interface Slave module
  • DEIF Undervoltage and overvoltage relay type RMV-112D
  • SAUTER AVM 234S valve actuator (with positioner)
  • REXRTOH INDRAMAT TVD 1.3 power module
  • Honeywell Expert Series-C I/O Module
  • GE PACSystems RX7i power module (IC698PSA100/350 series)
  • Yokogawa AFV40S/AFV40D Field Control Unit (FCU)
  • Schneider 31H2S207 FBM207/b/c Voltage Monitor/Contact Sense Input Modules
  • Emerson DeltaV™ S-series Traditional I/O
  • MKS Type T3B Butterfly Valve (with DeviceNet Interface)
  • Triconex 3624 Digital Output Module
  • ABB 3BSE031151R1 PM865K01 Processor Unit HI
  • GE V7768 VME Single Board Computer
  • HIMatrix F30 01 Safety-Related Controller
  • TOSHIBA Welker Bearing Linear Guides and Wedge Components
  • GE Multilin MIF series digital feeder relay
  • ABB MNSiS Motor Control Center MConnect Interface
  • Emerson PR6426 32mm Eddy Current Sensor
  • Schneider ELAU PacDrive C400/C400 A8 Controller
  • Yokogawa Motor YS1700 Programmable Indicator Controller
  • Honeywell Searchline Excel Infrared Open Circuit Gas Detector
  • Rockwell Automation ICS AADvance Controller
  • ABB Relion ® 615 series RED615 line differential protection and control device
  • DEIF PPU-3 Parallel and Protection Unit
  • Foxboro PBCO-D8-009 Terminal Board (TB)
  • ASEM HT2150/QT2150 Fanless Panel Control Computer (IPC)
  • ABB FOUNDATION ™ Fieldbus Link Device LD 810HSE Ex V1.0
  • ABB Panel 800 Version 6 PP885 Hardware and Installation
  • Konica Minolta CM-3700A-U Plus spectrophotometer
  • Schneider FBM233 Field Device System Integrator Module
  • MTL 8502-BI-DP Bus Interface Module (BIM)
  • ABB DO880 Ability ™ System 800xA ® hardware selector
  • GE VMIVME-2540 24 channel intelligent counter/controller
  • GE VMIVME-3115-010 32-Channel 12-bit Analog Output Board
  • GE Fanuc Automation VMIVME-4140 32-Channel 12-bit Analog Output Board
  • BENTLY 1900/65A General Purpose Equipment Monitor
  • REXROTH Digital axis control HNC100
  • GE Grid Solutions 369 Series
  • ZYGO ZMI 7702 laser head
  • ZYGO ZMI 501A shell
  • ABB PFEA111-65 Tension Electronic Equipment
  • Allen Bradley 1753 Series GuardPLC 1800 Controller
  • Allen Bradley 1747-DCM Direct Communication Module
  • Allen Bradley 1746-NI8 SLC 500 Analog Input Module
  • Allen Bradley 1734 series POINT I/O common terminal module and voltage terminal module
  • Allen Bradley 150 Series SMC Dialog Plus Controller
  • Allen Bradley 1494V series variable depth flange mounted isolation switch
  • AB Allen Bradley 1492 series terminal block
  • Allen Bradley 1485 Series DeviceNet Media System
  • Allen Bradley 1391-DES series digital AC servo drive
  • Allen Bradley 1336 PLUS II Adjustable Frequency Driver
  • Allen Bradley 1336 IMPACT AC Inverter
  • Allen Bradley 1326AB high-performance AC servo motor
  • Allen Bradley DeviceNet Communication Module (1203-GK5/1336-GM5)
  • Allen Bradley 1203-CN1 ControlNet Communication Module
  • Rockwell Automation PanelView Standard Series Terminal (Model 2711)
  • Siemens SIMATIC S7-300 Digital Output Module (6ES7322-1BH01-0AA0)
  • Siemens SIMATIC S7-300 Digital Input Module (6ES7321-1BH02-0AA0)
  • Rockwell Automation 836T Series Differential Pressure Controller
  • Schneider Modicon Quantum 140DRA84000 Discrete Output Module
  • Schneider Modicon Quantum 140CPS11420 power module
  • Schneider Modicon Quantum 140ACO02000 Analog Output Module
  • Schneider Modicon Quantum 140CPU65260 Unity Processor
  • SIEMENS 6GK1105-2AA10 SIMATIC NET series optical switching module (OSM ITP62)
  • Modicon Quantum 140XBP01000 racks backplanes
  • ABB NTST01 Time Sync Link TU Time Sync Link Terminal Unit
  • Siemens 6ES7954-8LC02-0AA0 SIMATIC Memory Card
  • Siemens 6ES7511-1AK02-0AB0 SIMATIC S7-1500 CPU 1511-1 PN Central Processing Unit