Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:
  • GE IS200DAMAG1B Gate Drive Amplifier
    ❤ Add to collection
  • GE IS200DAMAG1B Gate Drive Amplifier

    110V-380V
    5W-130W
    1A-30A
    1 year
    30
    United States, France, Japan, Viet Nam, Australia, Russia, Germany, Italy, Arabia

    GE IS200DAMAG1B Gate Drive Amplifier

    • ¥31126.00
      ¥32564.00
      ¥31126.00
      ¥31126.00
    • Satisfaction:

      Sales: 0

      Review: 0

    Weight:3.400KG
    • Quantity:
    • (Inventory: 33)
Description

GE IS200DAMAG1B Gate Drive Amplifier


GE IS200DAMAG1B Gate Drive Amplifier

Part Number IS200DAMAG1B Manufacturer General Electric Country of Manufacture As Per GE Manufacturing Policy Series EX 2100e Function Module Availability In StockIS200DAMAG1B is an inverter card developed by General Electrics. It is a part of GE drive control system. It is designed to work with a single IGBT module for the upper phase leg and a single IGBT module for the lower phase leg. These are typically Powerrex CM1000HA-28H IGBTs. This boards are intended to connect directly to the Bridge Personality Interface board as well as the IGBT's gate, emitter, and collector terminals. This is a Gate Drive Amplifier and Interface Board for the Innovation Series 620 frame low voltage drives. 

General Electric Mark VI Speedtronic systems for the management of gas and steam turbines included innovation drives. The module operates with a single IGBT module for the upper phase leg and a single IGBT module for the lower phase leg. They are typically Powerrex CM1000HA-28H IGBTs. DAMA boards are intended to link directly to the Bridge Personality Interface board as well as the IGBT's gate, emitter, and collector terminals. Features It features a dual in-line memory module (DIMM) socket for storing parameters, an Ethernet port for communication, a status indicator LED, and a built-in firmware upgrade function. The inverter card is also equipped with power semiconductors, gate drivers, and protection circuitry for controlling the flow of electrical power in the drive system. The card is designed for use in high-power applications, with a voltage rating of up to 690 volts and a current rating of up to 1700 amperes. 

The Gate Driver Amplifier and Interface Board is one of six variants. The Gate Driver Amplifiers and Interface Boards are used to connect power-switching devices (IGBTs) to the main control rack. The drive power rating is the identifier used to determine which variation of the DAM_ it is. The model has a drive power rating of six hundred and twenty frames. This board is used to amplify the current used to issue the culminating gate drive for the main drive's power bridge's on phase leg. When using this model, a fixed number of boards are used per drive. The board has three boards per drive, but only one board is used per phase leg. When this board is connected to the emitter, IGBT gate, collector terminals, and the Bridge Personality Interface control rack, it will connect directly to all of these. 

The board is modest, with only a few components installed. Four LED indicators are included (DS1 through DS4). These LEDs are either green or yellow and light up in the following patterns: When the higher IGBT is turned on, DS1 (yellow) turns on, while DS3 (green) turns off. For the bottom IGBT, DS2 (yellow) and DS4 (green) follow the same pattern. A 12-pin vertical connector and a 6-pin vertical connector are also included on the boards. Product Attributes Robust Design: Built to withstand harsh industrial environments, with a rugged construction and high resistance to temperature, vibration, and humidity. 

Versatile Functionality: The inverter card can be programmed and customized to meet the specific needs of various motor control applications. Easy Installation: The card is easy to install and can be integrated with other components in the Innovation Series drive, allowing for seamless system configuration and operation. Advanced Diagnostics: Includes advanced diagnostics features, providing detailed information on motor performance and status, which can be used for maintenance and troubleshooting purposes. High Compatibility: The inverter card is compatible with various types of AC motors, making it suitable for a wide range of industrial applications. Application Data The boards connect directly the IGBT gate, emitter, and collector terminals and to the control rack's BPIA Bridge Personality Interface (BPIA) board. 

The boards contain no fuses, testpoints, or configurable items. Powerrex IGBT: CM1000HA-28H No.of board per drive: 3 (1 per phase leg) Frame: 620 IGBT per phase leg (3 phase legs per drive): 1 Single IGBT module for upper phase leg, 1 singleIGBT module for lower phase leg. LED indicators DS1 (UON - Yellow): This LED indicator, labeled DS1, is used to indicate the state of the upper power switch or upper power circuit. When the upper power switch or circuit is turned on and actively conducting current, the DS1 LED illuminates, emitting a yellow light. It signifies that the upper power section is in an active state and functioning properly. DS3 (UFF - Green): The DS3 LED indicator, labeled DS3, is used to indicate the state of the upper power switch or upper power circuit when it is turned off. 

When the upper power switch is in the off state or not conducting current, the DS3 LED lights up, emitting a green light. It provides visual confirmation that the upper power section is inactive and not actively supplying power. DS2 (LON - Yellow): The DS2 LED indicator, identified as DS2, is used to indicate the state of the lower power switch. When the lower power switch or circuit is turned on and actively conducting current, the DS2 LED illuminates, emitting a yellow light. It signifies that the lower power section is in an active state and functioning properly. DS4 (LFF - Green): The DS4 LED indicator, labeled DS4, is used to indicate the state of the lower power switch or lower power circuit when it is turned off. 

When the lower power switch is in the off state or not conducting current, the DS4 LED lights up, emitting a green light. It provides visual confirmation that the lower power section is inactive and not actively supplying power. Gate Driver Power Supply P15L: Represents the positive power supply voltage for the lower gate driver. It provides a +15 V direct current (dc) power to the lower gate driver circuit. This voltage level is crucial for enabling the proper operation of the lower gate driver and facilitating the control signals needed to drive the lower power devices effectively. N7L: Refers to the negative power supply voltage for the lower gate driver. It supplies a -7.5 V dc power to the lower gate driver circuit. This negative voltage is necessary to establish the appropriate biasing and voltage levels required for reliable and efficient gate control of the lower power devices. 

It ensures the proper functioning of the lower gate driver. P15U: Signifies the positive power supply voltage for the upper gate driver. It delivers a +15 V dc power to the upper gate driver circuit. Similar to the P15L, this voltage level is vital for facilitating the control signals and gate driving requirements of the upper power devices, ensuring their optimal performance and operation. N7U: Denotes the negative power supply voltage for the upper gate driver. It supplies a -7.5 V dc power to the upper gate driver circuit. This negative voltage plays a critical role in establishing the necessary biasing and voltage levels for effective gate control of the upper power devices. It enables reliable and efficient operation of the upper gate driver. 

 Third-Party Connectivity GSM supports turbine control commands, data and alarms, alarm silence, logical events, and contact input sequence of events records with a resolution of 1 ms. One of three methods can be used to connect the system to the plant's DCS: Modbus link from the RS-232C port of the HMI Server to the DCS A high-speed Ethernet link at 10 Mbaud using the Modbus over TCP/IP protocol A high-speed Ethernet link at 10 Mbaud using the TCP/IP protocol and an application layer known as GEDS Standard Messages (GSM) Fault Detection A system with redundancy may be less reliable than a system without redundancy. The system must be capable of detecting and reporting faults so that they can be repaired before a forced outage occurs. 

Fault detection is required to ensure that a component or group of components is functioning properly. One or more of the following methods are used to detect faults. Process operator inspection; Equipment operator inspection. Special hardware circuits for operation monitoring Hardware and software watchdogs Logic in software Heartbeats in software There are numerous potential failure points in complex control systems. To create foolproof fault detection, this can be very expensive and time consuming. The failure to control a system's outputs is the most dangerous. To achieve the highest level of reliability, fault detection must be determined as close to the output as possible. The Mark VIe provides a high level of detection and fault masking by voting the outputs of all three controllers and monitoring discrepancies using triple redundant controllers and I/O modules. 

 Output Processing The three controllers' signal outputs are divided into three categories: Outputs are driven from individual I/O networks as single ended non-redundant outputs; Outputs exist on all three I/O networks and are merged into a single signal by the output hardware. Outputs exist on all three I/O networks and are output separately to the controlled process. This procedure may include external voting hardware. The three signals feed a voting relay driver, which operates a single relay per signal for normal relay outputs. For critical protective signals, the three signals feed a voting relay driver, which operates a single relay per signal. Three independent relays are driven by the three signals, with the relay contacts connected in the standard six-contact voting configuration.

  • User name Member Level Quantity Specification Purchase Date
  • Satisfaction :
No evaluation information
  • TRICON ®/ Installation and maintenance of E/E2/E3 transmitters
  • TRLC0NEX Tricon fault-tolerant controller
  • WAGO 221 series LEVER-NUTS ® Compact splicing connector
  • WAGO-I/O-SYSTEM 750 Programmable Fieldbus Controller ETHERNET 
  • WAGO Rail-Mount Terminal Blocks with Screw and Stud Connection
  • WAGO series molded case circuit breaker (MCCB)
  • WAGO Rail-Mount Terminal Blocks
  • WAGO I/O System 750/753 Series Distributed Automation System
  • HIMA X-CPU 01 processor module
  • Westinghouse iGen5000 Digital Inverter Generator
  • Westinghouse WGen7500DF Dual Fuel Portable Generator
  • Westinghouse WPX2700H/WPX3100H High Pressure Cleaning Machine
  • Westinghouse WH7500V portable generator
  • Westinghouse WGen9500c portable generator
  • Westinghouse DS/DSL series low-voltage power circuit breakers
  • Westinghouse ePX3500 Electric High Voltage Cleaning Machine
  • Westinghouse ST Switch Intelligent Automatic Portable Transfer Switch
  • Westinghouse 2400i digital inverter generator
  • Westinghouse iGen series digital inverter generator
  • HIMA CPU 01 Controller Module
  • Westinghouse WPX3000e/WPX3400e electric high-pressure cleaning machine
  • Westinghouse WGen2000, WGen3600, and WGen3600V portable generators
  • Westinghouse WGen5500 Generator
  • Westinghouse WGen20000 Generator
  • Westinghouse WPro8500 and WPro12000 portable generators
  • Westinghouse iGen4500DFc Dual Fuel Digital Variable Frequency Generator
  • Watlow Series L Temperature Limiting Controller
  • Watlow Series F4P Temperature/Process Controller
  • Watlow EZ-ZONE ® RME (Expansion) Module
  • Watlow EZ-ZONE ® RMA (Access) module
  • Watlow PM PLUS ™ 6 Series PID Integrated Controller
  • Watlow Immersion Heater
  • Watlow F4T Controller Installation and Failure
  • Watlow DIN-A-MITE ® Style C Solid State Power Controller
  • Watlow plug-in heater
  • Watlow Series 942 Controller
  • Watlow Series 988 Controller
  • Watlow Series 146 Temperature Regulator
  • Watlow PM LEGACY ™ Limit controller
  • How to install Johnson AE55/NIE55?
  • Watlow Series 96 Temperature Controller
  • Watlow PM PLUS ™ PID/Integrated Limit Controller
  • Watlow Ceramic Fiber Heater
  • Watlow Power Series microprocessor based SCR power controller
  • Watlow thermocouple products
  • Watlow Series 965 Controller
  • Watlow PM3 LEGACY ™ PID controller
  • Watlow Series 93 Controller
  • Watlow EZ-ZONE ® PM PID controller
  • Watlow CLS200 series controller
  • YAMAHA RCX40 4-axis robot controller
  • YASKAWA Z1000 series HVAC dedicated frequency converter
  • YASKAWA HV600&Z1000U series HVAC dedicated frequency converter
  • YASKAWA Power Regenerative Unit R1000 Series
  • YASKAWA AC Drive P1000 Industrial Fan and Pump Special Frequency Converter
  • YASKAWA FP605 series industrial fan pump dedicated driver
  • YASKAWA GA500 series AC micro driver
  • YASKAWA AC Drive G7 Series (Model CIMR-G7U)
  • YASKAWA U1000 series 24V power supply options (PS-U10L/PS-U10H)
  • YASKAWA GA800 industrial AC frequency converter Key issues
  • How to select YASKAWA GA800 industrial AC frequency converter?
  • YASKAWA AC Drive V1000 Compact Vector Control Drive
  • YASKAWA Control Pack CP-317M System Controller
  • YASKAWA VARISPEED-626M/656MR5 series vector control frequency converter
  • YASKAWA AC Servo Drive HR Series (CACR-HR) Multi functional/Positioning Control
  • YASKAWA MP2000 series machine controller communication module
  • Yokogawa AQ1100 series OLTS multi field tester
  • YOKOGAWA AQ7280 Optical Time Domain Reflectometer
  • YOKOGAWA AQ2200 Series Multi Application Testing System
  • YOKOGAWA AQ6150B/AQ6151B Optical Wavelength Meter
  • YOKOGAWA AQ6360 Optical Spectrum Analyzer
  • Yokogawa AQ6375E Spectral Analyzer Remote Control
  • Yokogawa DL350 Scope Order Communication Interface
  • Yokogawa 701944/701945 100:1 High Voltage Probe
  • Yokogawa CA700 pressure calibrator
  • Yokogawa DLM5000HD series high-definition oscilloscope
  • Yokogawa AQ1210 Series OTDR Multi Field Tester
  • Yokogawa AQ1000 OTDR Optical Time Domain Reflectometer
  • YOKOGAWA WT1801R series precision power analyzer communication interface
  • YOKOGAWA DLM3034HD/DLM3054HD High Definition Oscilloscope
  • YOKOGAWA AQ23011A/AQ23012A Modular Framework Equipment
  • YOKOGAWA DLM3054HD Mixed Signal Oscilloscope
  • YOKOGAWA CW500 Power Quality Analyzer
  • How to troubleshoot the YOKOGAWA CA500/CA550 multifunctional process calibrator?
  • How to maintain YOKOGAWA AQ7420 High Resolution Reflectometer?
  • YOKOGAWA FG410/FG420 arbitrary waveform editor
  • How to check the packaging and accessories of Yokogawa Model 701905 conversion cable?
  • YOKOGAWA MY600 Digital Insulation Resistance Tester
  • YOKOGAWA AQ7290 Series Optical Time Domain Reflectometer OTDR
  • How to ensure the safety and maintenance of YOKOGAWA LS3300 AC power calibrator?
  • Yokogawa AQ6377E Optical Spectrum Analyzer Remote Control
  • Yokogawa AQ6361 Optical Spectrum Analyzer
  • Yokogawa IS8000 Integrated Software ECU Monitoring and Synchronization Function
  • Yokogawa ROTAMASS TI Coriolis Mass Flow Meter
  • Yokogawa ROTOMETER RAMC Metal Variable Area Flow Meter
  • Yokogawa SL1000 high-speed data acquisition unit input module
  • How to install and wire the Yokogawa FLXA402T turbidity and chlorine liquid analyzer?
  • Yokogawa WTB10-DO Series Dissolved Oxygen Measurement System Terminal Box
  • Yokogawa Model 702928 PBD0200 Differential Probe
  • YOKOGAWA ADMAG TI Series AXW Electromagnetic Flow Meter (25-450mm) Installation and Operation
  • How to troubleshoot YOKOGAWA ADMAG TI series AXW electromagnetic flowmeter (25-1800mm)?
  • How to install YOKOGAWA DO30G dissolved oxygen sensor?
  • YOKOGAWA SC4AJ Conductivity Sensor Manual
  • YOKOGAWA SC210G Conductivity Detector
  • How to install and wire Yokogawa PH4/OR4 series pH and ORP sensor (IM12B10B00-01EN)?
  • How to troubleshoot Yokogawa OR8EFG KCl filled ORP sensor (IM12C07J01-01E)?
  • YOKOGAWA FU24 pH/ORP Composite Sensor with Pressure Compensation (IM 12B06J03-03EN-P)
  • Yokogawa SC200 Intelligent Two Wire Conductivity Transmitter System (IM12D08B01-01E)
  • YOKOGAWA CENTUM VP Integrated Production Control System (TI33J01A10-01EN)
  • ABB AO2000-LS25 Laser Analysts User Manual
  • YOKOGAWA FA-M3 positioning module (with analog voltage output)
  • YOKOGAWA FA-M3 Series Basic Modules
  • YOKOGAWA EJA110E Diff erential Pressure Transmitter
  • Zygo 3D Optical Profiler
  • How to unpack and install the Zygo Mark II 4-inch interferometer system?
  • Zygo NewView 9000 3D Optical Profilometer Technology Advantages
  • Zygo NewView 9000 3D Optical Profilometer Technology
  • Zygo Profilometer Standard Operating Procedure
  • Zygo’s Guide to Typical Interferometer Setups
  • ZYGO Laser Interferometer Accessory Guide OMP-0463AM
  • ZYGO MetroPro 9.0 Reference Guide (OMP-0347M)
  • Zygo Device Standard Operating Procedure (SOP)
  • Zygo Verify Laser Interferometer Product Highlights
  • Zygo MicroLUPI Micro Hole Diameter Laser Unequal Path Interferometer
  • ZYGO ZMI-1000 Displacement Measuring Interferometer System
  • Zygo’s ZMI 2000 System Displacement Measuring Interferometer Systems
  • ABB IGCT Technology: A Revolutionary Breakthrough in High Voltage Inverters
  • Siemens 6AG1204-2BB10-4AA3 Ethernet Switch