Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:
  • GE IS200TBTCH1C Thermocouple Input Terminal Board
    ❤ Add to collection
  • GE IS200TBTCH1C Thermocouple Input Terminal Board

    110V-380V
    5W-130W
    1A-30A
    1 year
    30
    United States, France, Japan, Viet Nam, Australia, Russia, Germany, Italy, Arabia

    GE IS200TBTCH1C Thermocouple Input Terminal Board

    • ¥28650.00
      ¥28569.00
      ¥28650.00
      ¥28650.00
    • Satisfaction:

      Sales: 0

      Review: 0

    Weight:3.600KG
    • Quantity:
    • (Inventory: 36)
Description

GE IS200TBTCH1C Thermocouple Input Terminal Board


GE IS200TBTCH1C Thermocouple Input Terminal Board

Part Number IS200TBTCH1C Manufacturer General Electric Country of Manufacture As Per GE Manufacturing Policy Series Mark VIe Function Module Availability In StockIS200TBTCH1C is a thermocouple terminal board developed by General Electric. It is a part of the Mark VIe control system. The thermocouple terminal board accommodates up to 24 thermocouple inputs of types E, J, K, S, or T. These inputs are connected to two barrier-type blocks on the terminal board, and communication with the I/O processor is established through DC-type connectors. 

In the Mark VIe system, the PTCC I/O pack collaborates with the board, supporting simplex, dual, and TMR (Triple Modular Redundant) systems. In simplex configurations, two PTCC packs can be plugged into the TBTCH1C, providing a total of 24 inputs. When using the TBTCH1B, one, two, or three PTCC packs can be connected, supporting a range of system setups, although only 12 inputs are accessible in this configuration. Installation Mounting the Removable Terminal Blocks: The first step in the installation process involves mounting the removable terminal blocks on the terminal board. 

These blocks are instrumental in connecting the thermocouples to the system. They are secured in place using two screws to ensure stability and a reliable connection. Connecting Thermocouples: Thermocouples, which are temperature sensors, are then wired directly to the terminals on these blocks. The terminal blocks have 24 terminals, each capable of accepting wires up to 12 AWG in size. These terminals are where the wires from the thermocouples are securely attached. Shield Terminal Strip for Grounding: On the left side of each terminal block, there is a shield terminal strip that is attached to chassis ground. 

This strip plays a crucial role in grounding and shielding the thermocouple wires, preventing interference and ensuring accurate temperature measurements. Cabling: Mark VIe systems utilize I/O packs that plug into the J-type connectors on the thermocouple terminal board. The number of cables or I/O packs needed depends on the level of redundancy required for the system. Redundancy ensures system reliability by providing backup components. Operation Flexibility with Thermocouple Inputs: It offers remarkable flexibility as it can accommodate 24 thermocouple inputs, whether they are grounded or ungrounded. This adaptability allows it to work effectively with a variety of temperature-sensing setups. Long-Distance Connectivity: One notable feature is its ability to handle thermocouple inputs located up to 300 meters (approximately 984 feet) away from the turbine control panel. 

This long-distance capability enables the placement of temperature sensors in various parts of the system while maintaining reliable communication with the control panel. Cable Resistance Tolerance: To ensure accurate and dependable data transmission, it is designed to tolerate a maximum two-way cable resistance of 450 ohms. This tolerance ensures that cable length and resistance variations do not compromise the quality of the temperature data collected. 

High-Frequency Noise Suppression: Noise in electrical signals can interfere with temperature measurements. TBTC addresses this concern by incorporating high-frequency noise suppression mechanisms. These mechanisms help filter out unwanted electrical noise, ensuring that the temperature readings remain precise and free from interference. Cold Junction Reference Devices: Equipped with two cold junction reference devices These devices are essential for compensating for temperature variations at the junction where the thermocouple wires connect to the terminal blocks. By providing reference points, they enable accurate temperature measurements, even in varying environmental conditions. 

Analog-to-Digital Conversion in the I/O Processor: The analog-to-digital conversion process, which translates analog temperature signals into digital data, occurs in the I/O processor. This step is vital in preparing the temperature readings for further processing and analysis. Linearization for Different Thermocouple Types: Different thermocouple types exhibit unique temperature-voltage relationships. To ensure accurate temperature readings, the TBTC handles the linearization of these relationships for individual thermocouple types. This means that the temperature data is adjusted to reflect the specific characteristics of the thermocouples in use. Product Attributes Reference Junction Temperature Measurement: Cold junction compensation is achieved by measuring the reference junction temperature at specific locations on each H1C terminal board. 

This reference junction, also known as the cold junction, is a crucial reference point for thermocouples. Accurate measurement of its temperature is essential for compensating temperature readings. TMR H1B Board's Multiple Cold Junction References: In the case of the TMR H1B board, there are six cold junction references available. These references serve as additional reference points for compensation. However, it's important to note that only three of these references are available when associated with packs. These references are invaluable for enhancing the accuracy of temperature measurements. Cold Junction Temperature Accuracy: Achieving precise temperature measurements is a primary objective of cold junction compensation. 

The system's cold junction temperature accuracy is specified at 2 degrees Fahrenheit. This level of accuracy ensures that temperature readings are highly reliable and free from significant errors. Fault Detection Through High/Low Limit Checks: To further enhance the reliability of temperature measurements, hardware-based high and low limit checks are employed for fault detection. These checks are designed to identify any temperature readings that fall outside acceptable boundaries, indicating potential errors or faults in the system. Comprehensive Monitoring of Key Parameters: The monitoring process within the system is extensive and includes readings from all temperature sensors (TCs), cold junctions (CJs), calibration voltages, and calibration zero readings. This comprehensive monitoring approach ensures that all critical parameters are constantly assessed and that any deviations from expected values are promptly detected.

Our Main Brands

· - ABB Advant-800xAAdvant OCSBailey Infi 90 and Net 90H&B Freelance 2000DSQC RobotsIGCT / IGBT

· - GE General Electric Field Control, Genius I/O, QuickPanel, RX3i PacSystem, Series 90, Series 90, Series VersaMax

· - Allen Bradley Allen-Bradley SLC500, MicroLogix, CompactLogix, ControlLogix, PLC-5, Panel View,

· - Bently Nevada 3300 System, 3500 System

· - Honeywell 7800 Series, FSC, IPC, Mxopen, TDC 2000, TDC 3000, Experion PKS(C200,C300)

· - Yokogawa Centum CS - Centum VP, Centum XL - micro XL, FA-M3, ProSafe-PLC

· - Ovation, Foxboro, EPRO, Emerson DeltaV, Fuji, Siemens, HIMA, Prosoft, Invensys Triconex, ICS TRIPLEX, Woodward, Bachmann, Schneider

For more information, you can call 15305925923

  • User name Member Level Quantity Specification Purchase Date
  • Satisfaction :
No evaluation information
  • Foxboro FBM224 Modbus ® communication module
  • Foxboro Evo ™ Compact 200 Series I/O Subsystem
  • Foxboro ™ DCS Compact FBM201 Analog Input Interface Module
  • SIEMENS SGT-2000E series gas turbine
  • SIEMENS SIMATIC HMI Intelligent Panel
  • SIEMENS SIMATIC HMI Intelligent Panel Operation Instructions
  • SIEMENS SIMATIC S7 300/400 operates MICROMASTER 4 (MM4) frequency converter through Profibus DP
  • SIEMENS SIMATIC HMI Basic Panels Operating Manual
  • SIEMENS SINAMICS G120 Control Unit CU240E
  • SIEMENS SINAMICS G130/G150 products
  • SIEMENS SINAMICS Low Voltage Inverter
  • SIEMENS Climatix ™ S400 STD HVAC Controller (POS646 Series)
  • SIEMENS 3AH3 vacuum circuit breaker
  • SIEMENS QFM31xx series air duct sensor
  • SIEMENS SIMOTICS SD 1LE7 series low-voltage motor (shaft height 71-315)
  • SIEMENS SIMOTICS L-1FN3 series linear motor
  • SIEMENS SITRANS P DS III series pressure transmitter
  • SIEMENS ICROMASTER 420 frequency converter
  • SIEMENS SIMOGEAR Gear Motor Products
  • SIEMENS 40.5kV 3AE8 Solid Sealed Series Vacuum Circuit Breaker
  • Selection and Application Guide for SIEMENS PL and ES Series Load Centers
  • SIEMENS SIMATIC Drive Controller System
  • SIEMENS SIMATIC S7-1500/ET 200MP Automation System
  • SINAMICS SIRIUS series switchgear
  • SIEMENS G120 CU240BE-2 frequency converter
  • SIEMENS 3AH3 series vacuum circuit breaker
  • SIEMENS 1PH7 series asynchronous motors for machine tools
  • SIEMENS SIMOTICS 1LE8 series low-volt​age high-power motor
  • SIEMENS SIMATIC S5 series PLC STEP 5 programming software
  • SIEMENS E50 series terminal power distribution products
  • SIEMENS SIMOTICS SD 1LE5 series low-voltage motor
  • SIEMENS SIMOTICS L-1FN3 Linear Motor Operating Instructions
  • SIEMENS VVF53./VXF53. series flange valves
  • SIEMENS SIMATIC S5 S5-115U Programmable Controller
  • SIEMENS SMART S7-200 Intelligent Programmable Controller
  • SIEMIENS MCCB Series Short Circuit Rating Guide
  • SIEMIENS SIPART PS2 (6DR5...) Electrical Positioner Operation Guide
  • SIEMIENS SIMATIC TP170B Touch Screen
  • SIEMENS SIMATIC TI545/TI555 Controller
  • SIEMIENS SIMATIC 505 Analog I/O Module
  • SIEMIENS S7-1200/1500 Controller TIA Portal Programming Guide
  • SIEMIENS PFT6 series weighing sensor
  • SIEMIENS 1FK6 series three-phase servo motor
  • Siemens medium voltage vacuum switch technology and components
  • TEKTRONIX CFG 253 Function Generator
  • TEKTRONIX P6022 Current Probe
  • Tektronix AWG70000 series arbitrary waveform generator
  • Tektronix AWG2021 250 MHz Arbitrary Waveform Generator
  • Tektronix DMM4050 6 half bit high-precision digital multimeter
  • Tektronix 370B Programmable Curve Tracer
  • TEKTRONIX TCPA300/400 current probe amplifier
  • Tektronix AFG1022 Function Generator
  • Tektronix P6139A 10X Passive Probe
  • Tektronix 3 Series Hybrid Domain Oscilloscope
  • TEKTRONIX AFG31000 series arbitrary function generator
  • TEKTRONIX THDP0100/0200 and TMDP0200 series high-voltage differential probes
  • TEKTRONIX 3 Series Mixed Domain Oscilloscope MDO32 and MDO34
  • Tektronix 2440 digital oscilloscope
  • Tektronix MSO4000/DPO4000 series digital fluorescence oscilloscope
  • Tektronix TPS2000 series digital storage oscilloscope
  • Tektronix TBS1000B and TBS1000B-EDU series digital storage oscilloscopes
  • Tektronix XYZs of Oscilloscopes
  • TEKTRONIX 4K/UHD Monitoring and Measurement Guidelines
  • Tektronix 5 Series Mixed Signal Oscilloscope (MSO54/56/58)
  • Tektronix TDS3000 series digital fluorescence oscilloscope
  • TEKTRONIX MSO5000B, DPO5000B series mixed signal oscilloscope
  • Tektronix TBS1000 series digital storage oscilloscope
  • Tektronix 4000 series oscilloscope
  • TEKTRONIX VX4240 VXIbus protocol waveform digitizer/analyzer module
  • GE PACSystems RSTi EP EPSCPE100 Programmable Controller
  • TEKTRONIX 5B12N Dual Time Base Plugin
  • TEKTRONIX 5A22N Differential Amplifier
  • Tektronix 5440 oscilloscope
  • TOSHIBA MULTIFUNCTIONAL DIGITAL SYSTEMS TopAccess Guide  
  • TOSHIBA e-STUDIO 7516AC Color Multifunctional Printer
  • TOSHIBA e-STUDIO 7516AC Series Color Multifunctional Printer
  • TOSHIBA CANVIO BASICS portable hard drive
  • TOSHIBA TOSBERT TM VF-nC1 Industrial Inverter
  • TOSHIBA TE2 series low-voltage digital solid-state soft starter
  • ABB Sace BSD series brushless servo drive
  • TOSHIBA VF-S15 frequency converter
  • TOSHIBA Color TV User Manual
  • TOSHIBA 2505AC, 3005AC, 3505AC series multifunctional laminating machines
  • TOSHIBA External and Internal Hard Drives
  • TOSHIBA 1600XPi Series UPS Installation and Operation
  • TOSHIBA TOSBERT S11 series frequency converter
  • Toshiba TOSBERT S7 series frequency converter
  • Toshiba Motors Low & Medium Voltage Product Offering
  • TOSHIBA VF-AS3 inverter RS485 communication function
  • TOSHIBA TOSBERT VF-A3 frequency converter
  • TOSHIBA V200 series programmable logic controller
  • TOSHIBA TOSBERT VF-S15 series frequency converter
  • TRICON ®/ Installation and maintenance of E/E2/E3 transmitters
  • TRLC0NEX Tricon fault-tolerant controller
  • WAGO 221 series LEVER-NUTS ® Compact splicing connector
  • WAGO-I/O-SYSTEM 750 Programmable Fieldbus Controller ETHERNET 
  • WAGO Rail-Mount Terminal Blocks with Screw and Stud Connection
  • WAGO series molded case circuit breaker (MCCB)
  • WAGO Rail-Mount Terminal Blocks
  • WAGO I/O System 750/753 Series Distributed Automation System
  • HIMA X-CPU 01 processor module
  • Westinghouse iGen5000 Digital Inverter Generator
  • Westinghouse WGen7500DF Dual Fuel Portable Generator
  • Westinghouse WPX2700H/WPX3100H High Pressure Cleaning Machine
  • Westinghouse WH7500V portable generator
  • Westinghouse WGen9500c portable generator
  • Westinghouse DS/DSL series low-voltage power circuit breakers
  • Westinghouse ePX3500 Electric High Voltage Cleaning Machine
  • Westinghouse ST Switch Intelligent Automatic Portable Transfer Switch
  • Westinghouse 2400i digital inverter generator
  • Westinghouse iGen series digital inverter generator
  • HIMA CPU 01 Controller Module
  • Westinghouse WPX3000e/WPX3400e electric high-pressure cleaning machine
  • Westinghouse WGen2000, WGen3600, and WGen3600V portable generators
  • Westinghouse WGen5500 Generator
  • Westinghouse WGen20000 Generator
  • Westinghouse WPro8500 and WPro12000 portable generators
  • Westinghouse iGen4500DFc Dual Fuel Digital Variable Frequency Generator
  • Watlow Series L Temperature Limiting Controller
  • Watlow Series F4P Temperature/Process Controller
  • Watlow EZ-ZONE ® RME (Expansion) Module
  • Watlow EZ-ZONE ® RMA (Access) module
  • Watlow PM PLUS ™ 6 Series PID Integrated Controller
  • Watlow Immersion Heater
  • Watlow F4T Controller Installation and Failure
  • Watlow DIN-A-MITE ® Style C Solid State Power Controller
  • Watlow plug-in heater
  • Watlow Series 942 Controller