Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:
  • GE IS200VVIBH1A Vibration Monitor Board
    ❤ Add to collection
  • GE IS200VVIBH1A Vibration Monitor Board

    110V-380V
    1A-30A
    5W-130W
    1 year
    30
    United States, France, Japan, Viet Nam, Australia, Russia, Germany, Italy, Arabia

    GE IS200VVIBH1A Vibration Monitor Board

    • ¥10895.49
      ¥10562.26
      ¥10895.49
      ¥10895.49
    • Satisfaction:

      Sales: 0

      Review: 0

    Weight:2.940KG
    • Quantity:
    • (Inventory: 94)
Description

GE IS200VVIBH1A Vibration Monitor Board


GE IS200VVIBH1A Vibration Monitor Board

Part Number IS200VVIBH1A Manufacturer General Electric Country of Manufacture As Per GE Manufacturing Policy Series Mark VI/VIe Function Module Availability In StockIS200VVIBH1A is an Vibration Monitor Board developed by GE. It is a part of the Mark VI control system. The Mark VI system incorporates Bently Nevada probes for shaft vibration monitoring, with the Vibration Monitor Board playing a central role in processing signals from these probes. 

This information is obtained from the TVIB terminal board, to which up to 14 probes can connect directly. Two TVIBs can then be cabled to the VVIB processor board. The VVIB digitizes the diverse vibration signals and transmits them over the VME bus to the controller. PROTECTIVE FUNCTIONS IN TURBINE APPLICATIONS Vibration probe inputs are typically utilized for four protective functions in turbine applications: Vibration Monitoring: Proximity probes monitor the peak-to-peak radial displacement of the shaft, capturing the shaft's motion within the journal bearing in two radial directions. 

The system employs non-contacting probes and Proximitors, providing alarm, trip, and fault detection capabilities. Rotor Axial Position Monitoring: A probe is strategically mounted in a bracket assembly off the thrust bearing casing to observe the motion of the thrust collar on the turbine rotor. Similar to vibration monitoring, this system utilizes non-contacting probes and Proximitors, resulting in thrust bearing wear alarm, trip, and fault detection. Differential Expansion Monitoring: This application employs non-contacting probes and Proximitors to detect excessive expansion differential between the rotor and the turbine casing. It provides alarm, trip, and fault detection for differential expansion issues. Rotor Eccentricity Monitoring: A probe, positioned adjacent to the shaft, continuously senses the surface and updates the turbine control. 

The calculation of eccentricity is made once per revolution during turning gear operation. The system provides alarm and fault indications for rotor eccentricity. INSTALLATION Power Down the Processor Rack: Before proceeding with the installation, ensure the processor rack is powered down. This precautionary measure prevents any potential electrical interference or disruptions during the installation process. Slide in the Board: Carefully slide VVIB into the designated slot in the rack. Ensure that the board is aligned with the slot and smoothly insert it to establish proper connections. Secure the Board with Levers: Once the board is correctly inserted, use your hands to push the top and bottom levers. These levers play a crucial role in securing the board firmly in place, establishing a reliable connection with the edge connectors within the rack. Tighten Captive Screws: To further secure the board and prevent any unintended movement, tighten the captive screws located at the top and bottom of the front panel. Use an appropriate tool to ensure a snug fit without over-tightening. OPERATION Probe Compatibility: TVIB is designed to support a variety of Bently Nevada probes, including Proximitor, Seismic, Accelerometer, and Velomitor probes. 

These probes are specialized for monitoring different aspects of turbine performance and mechanical conditions. Power Supply: Power for the vibration probes is supplied by the Vibration Monitor Board. The VVIB boards, operating in either Simplex or Triple Modular Redundant (TMR) mode, ensure a stable and reliable power supply to the connected probes. Probe Signal Processing: The signals from the vibration probes are transmitted, where they undergo processing. TVIB supports Proximitor, Seismic, Accelerometer, and Velomitor probes, and it is capable of handling signals from these sensors with precision. A/D Conversion: After receiving the probe signals, TVIB facilitates Analog-to-Digital (A/D) conversion. 

This process digitizes the analog signals from the probes into digital values, making them suitable for further processing and analysis. Communication with Controller: The digitized vibration signals are then sent over the VME bus to the controller. This communication pathway ensures that the processed data is efficiently transmitted to the central control system for real-time monitoring, analysis, and decision-making.

Installation

Power Down the Processor Rack: Before proceeding with the installation, ensure the processor rack is powered down. This precautionary measure prevents any potential electrical interference or disruptions during the installation process.

Slide in the Board: Carefully slide VVIB into the designated slot in the rack. Ensure that the board is aligned with the slot and smoothly insert it to establish proper connections.

Secure the Board with Levers: Once the board is correctly inserted, use your hands to push the top and bottom levers. These levers play a crucial role in securing the board firmly in place, establishing a reliable connection with the edge connectors within the rack.

Tighten Captive Screws: To further secure the board and prevent any unintended movement, tighten the captive screws located at the top and bottom of the front panel. Use an appropriate tool to ensure a snug fit without over-tightening.

Operation

Probe Compatibility: TVIB is designed to support a variety of Bently Nevada probes, including Proximitor, Seismic, Accelerometer, and Velomitor probes. These probes are specialized for monitoring different aspects of turbine performance and mechanical conditions.

Power Supply: Power for the vibration probes is supplied by the Vibration Monitor Board. The VVIB boards, operating in either Simplex or Triple Modular Redundant (TMR) mode, ensure a stable and reliable power supply to the connected probes.

Probe Signal Processing: The signals from the vibration probes are transmitted, where they undergo processing. TVIB supports Proximitor, Seismic, Accelerometer, and Velomitor probes, and it is capable of handling signals from these sensors with precision.

A/D Conversion: After receiving the probe signals, TVIB facilitates Analog-to-Digital (A/D) conversion. This process digitizes the analog signals from the probes into digital values, making them suitable for further processing and analysis.

Communication with Controller: The digitized vibration signals are then sent over the VME bus to the controller. This communication pathway ensures that the processed data is efficiently transmitted to the central control system for real-time monitoring, analysis, and decision-making.


  • User name Member Level Quantity Specification Purchase Date
  • Satisfaction :
No evaluation information
  • Emerson FloBoss ™ S600+ Flow Computer
  • ABB 3BHE02195R0124 excitation control unit
  • ABB 07DC91C Digital I/O Module
  • ABB 3BHE003855R001 UNS2882A excitation control unit module
  • ABB 3BHE014967R0002 UNS 2880B-P,V2: COB PCB Assembled
  • ABB 3BSE050091R20 Tension Electronics PFEA112-20
  • ABB 3BSE020520R1 CI810B AF 100 Fieldbus Comm. Interface
  • ABB HIEE45116R0001 FM9925A-E High Voltage Control Board
  • ABB ASE2UDC920AE01 Digital Controller Module
  • ABB PPC380AE102 high-performance industrial controller
  • ABB PPC380AE02 high-performance control module
  • ABB NU8976A99 HIER46665R0099 NU8976A Controller Module
  • ABB 3BSE017235R1 PXAH 401 Operator unit
  • ABB 3BSE018877R2 PFSK 152 Connects DSP-UP (PLD 1.0/1)
  • ABB 57160001-GF DSDP 150 Pulse Encoder Input Unit 
  • Triconex CM3201S2 Communication Module
  • ABB 3BHE05594R0002 GBU72 power grid circuit breaker unit
  • ABB 5SHY 4045L0006 IGCT 4500V 91MM 3BHB030310R0001
  • Xycom 9403, Xycom 9450 CRT LCD Upgrade Kit with Cable Kit
  • Xycom 5019T-SER Operator Interface Screen Monitor
  • XYCOM 1547 Heavy-Duty Industrial PC without Integrated Display
  • ABB BCU-02/12/22 Control Unit Hardware
  • ABB REF615 Feeder Protection and Control
  • ABB 615 series ANSI protection and control
  • ABB M063B High Frequency Industrial Controller
  • ABB IMDS003 digital output slave module
  • ABB 5SHX08F4502 IGCT thyristor module
  • ABB RMIO-12C control unit
  • ABB XO08R1-B4.0 Extended Output Module
  • ABB 5SGX1060H0003 AC contactor
  • ABB REG216/REG216 Classic digital generator protection
  • ABB VA-MC15-05 Controller Module
  • ABB VA-3180-10 Variable Speed Drive
  • ABB 72395-4-039123 excitation system power module
  • ALSTOM NRD108031 TRVC070999000 BOTTOM high-speed counting module
  • ALSTOM CMU 42015-115-00 Control Module
  • GE P40 Agile Series Intelligent Electronic Devices (IEDs)
  • ABB EasyLine series gas analyzer EL3020, EL3040
  • ABB 83SR04 module
  • ABB 216EA61b High Performance Industrial Control Module
  • ABB MB510 Program Card Interface
  • ABB LDGRB-01 3BSE013177R1 Stand-alone resolution module
  • ABB ACH550-01 frequency converter
  • ABB DTDX991A 61430001-UW servo controller
  • ABB 300 series NEMA rated full voltage controller
  • ABB DTCC901B High Performance Digital Temperature Controller
  • ABB 5SHX14H4502 Controller
  • ABB 3BSE013064R1 PU516 Engineering Board -PCI
  • ABB 5SHX10H6004 Control Signal Processing Module
  • ABB PPE091A101 medium voltage frequency converter
  • ABB CONTROL UNIT SYN 5201A-Z,V277 3BHB006714R0277
  • ABB 3BSE017235R1 PXAH 401 Operator unit
  • ABB Plantguard Safety Instrumented System
  • ABB AC 800M 6.0 Controller Hardware
  • ABB Panel 800 Version 6 Series Operator Panel
  • ABB System proS series enclosed starter
  • ABB Tmax T7 series molded case circuit breaker
  • ABB UK 500 series household distribution box
  • ABB contactors and overload relays
  • ABB NTAC-0x pulse encoder interface module
  • ABB electronic timer CT-APS.22
  • ABB Small, compact Thermostat KTO 011 / KTS 011
  • ABB medium voltage frequency converter ACS2000 4kV frame 1, 2, 3 spare parts
  • ABB low-voltage AF contactor AF400... AF460
  • ABB KPM Sheet Break Detector - KB2
  • ABB TP854 base plate
  • ABB AO845A Analog Output Module
  • ABB FS450R12KE3+AGDR-71C Integrated Circuit
  • ABB PNI800K01 Ability ™ Symphony ® Plus Hardware Selector
  • ABB REA 101 arc protection relay
  • ABB 3BSC950193R1 TB850 CEX-Bus Terminator
  • ABB BC810K02 Compact Product Kit Hardware
  • ABB 3BSC750262R1 (TK851V010) connection cable
  • ABB DI810 digital input module
  • ABB Harmony Sequence of Events (SOE) system
  • ABB Tension Electronics PFEA111/112
  • ABB AI801 Analog Input Module
  • ABB AF C094 AE02 ARCnet Control Board
  • ABB TP830-1 PLC module
  • ​ABB CP430 Human Machine Interface (HMI) Installation and Operation
  • ABB 81EU01-E/R3210 Analog Signal Input Module
  • ABB Panel 800- PP836 5.1 Hardware and Installation
  • ABB PM866AK01 Controller
  • ABB TK850V007 CEX Bus expansion cable Installation and configuration method
  • ABB AO801 Analog Output Module
  • ABB CI855 communication interface
  • ABB REF615R feeder protection and control
  • ABB EL3020 Model EasyLine Continuous Gas Analyzers
  • MOLEX SST-PB3-VME-1 and SST-PB3-VME-2 Hardware Reference Guide
  • Eaton XVH300 MICRO PANEL
  • Eaton XV-303/XV-313 multi touch display
  • ABB PP877 3BSE069272R2 Operator Panel
  • ABB 1SVR011718R2500 Analog Signal Converter
  • ABB BC810K02 CEX Bus Interconnection Unit Kit
  • ABB RELION ® 615 series REU615 voltage protection and control relay
  • ABB Symphony Harmony/INFI 90 DCS Remote I/O Module Upgrade Kit
  • ABB REM610C55HCNN02 motor protection relay
  • ABB TU810V1 Compact Terminal Unit
  • ABB REF 541, REF 543, and REF 545 feeder terminals
  • ABB UNITOL 1000 series automatic voltage regulator
  • ABB PCD235C101 3BHE057901R0101 AC800pec Excitation High Performance Control System
  • ABB GFD233 3BHE022294R0102 Redundant System Control Module
  • Galil DMC-40x0 series motion controller
  • ABB AO2040-CU Ex Central Unit
  • ABB REF615 feeder protection relay
  • ABB INSUMMCU2 MCU2A02V24 motor control unit
  • ABB REF 542plus multifunctional protection and switchgear control unit
  • ABB PP886 Compact Product Suite hardware selector
  • ABB AC500 V3 PLC Enhanced connectivity and performance
  • ABB SYNCHROTACT ® 5 Synchronous and Parallel Devices
  • ABB SUE 3000 high-speed switching device
  • ABB REF542plus multifunctional protection and switchgear control unit
  • ABB Relion ® 615 series REF615 feeder protection and control device
  • Bentley 3500/45 Position Monitor
  • Bentley 3500/42 Proximitors ®/ Earthquake monitoring module
  • ABB molded case circuit breaker
  • ABB MVME162 Embedded Controller
  • ABB TU810V1 System 800xA hardware selector
  • ABB SPAJ 140 C overcurrent and ground fault relay
  • ABB AC 800PEC High Performance Control System
  • ABB REF601 and REJ601 relays
  • ALSTOM RPH3/PS125b Controlled Switching Device,CT1VT220/TCR
  • ABB V-Contact VSC Medium voltage vacuum contactors
  • ABB 3BHE004385R0001 UNS 0884a, V1:Current Sensor 2000A
  • ABB Symphony Plus system IOR810 S800 I/O gateway
  • ABB Universal Performance Motor
  • ABB Electromagnetic Flowmeters ProcessMaster FEP300/FEP500 and HygienicMaster FEH300/FEH500
  • ABB Symphony Plus System SD Series PROFINET Interface Module PDP800