Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:
  • GE IS200VVIBH1A Vibration Monitor Board
    ❤ Add to collection
  • GE IS200VVIBH1A Vibration Monitor Board

    110V-380V
    5W-130W
    1A-30A
    1 year
    30
    United States, France, Japan, Viet Nam, Australia, Russia, Germany, Italy, Arabia

    GE IS200VVIBH1A Vibration Monitor Board

    • ¥10895.49
      ¥10562.26
      ¥10895.49
      ¥10895.49
    • Satisfaction:

      Sales: 0

      Review: 0

    Weight:2.940KG
    • Quantity:
    • (Inventory: 94)
Description

GE IS200VVIBH1A Vibration Monitor Board


GE IS200VVIBH1A Vibration Monitor Board

Part Number IS200VVIBH1A Manufacturer General Electric Country of Manufacture As Per GE Manufacturing Policy Series Mark VI/VIe Function Module Availability In StockIS200VVIBH1A is an Vibration Monitor Board developed by GE. It is a part of the Mark VI control system. The Mark VI system incorporates Bently Nevada probes for shaft vibration monitoring, with the Vibration Monitor Board playing a central role in processing signals from these probes. 

This information is obtained from the TVIB terminal board, to which up to 14 probes can connect directly. Two TVIBs can then be cabled to the VVIB processor board. The VVIB digitizes the diverse vibration signals and transmits them over the VME bus to the controller. PROTECTIVE FUNCTIONS IN TURBINE APPLICATIONS Vibration probe inputs are typically utilized for four protective functions in turbine applications: Vibration Monitoring: Proximity probes monitor the peak-to-peak radial displacement of the shaft, capturing the shaft's motion within the journal bearing in two radial directions. 

The system employs non-contacting probes and Proximitors, providing alarm, trip, and fault detection capabilities. Rotor Axial Position Monitoring: A probe is strategically mounted in a bracket assembly off the thrust bearing casing to observe the motion of the thrust collar on the turbine rotor. Similar to vibration monitoring, this system utilizes non-contacting probes and Proximitors, resulting in thrust bearing wear alarm, trip, and fault detection. Differential Expansion Monitoring: This application employs non-contacting probes and Proximitors to detect excessive expansion differential between the rotor and the turbine casing. It provides alarm, trip, and fault detection for differential expansion issues. Rotor Eccentricity Monitoring: A probe, positioned adjacent to the shaft, continuously senses the surface and updates the turbine control. 

The calculation of eccentricity is made once per revolution during turning gear operation. The system provides alarm and fault indications for rotor eccentricity. INSTALLATION Power Down the Processor Rack: Before proceeding with the installation, ensure the processor rack is powered down. This precautionary measure prevents any potential electrical interference or disruptions during the installation process. Slide in the Board: Carefully slide VVIB into the designated slot in the rack. Ensure that the board is aligned with the slot and smoothly insert it to establish proper connections. Secure the Board with Levers: Once the board is correctly inserted, use your hands to push the top and bottom levers. These levers play a crucial role in securing the board firmly in place, establishing a reliable connection with the edge connectors within the rack. Tighten Captive Screws: To further secure the board and prevent any unintended movement, tighten the captive screws located at the top and bottom of the front panel. Use an appropriate tool to ensure a snug fit without over-tightening. OPERATION Probe Compatibility: TVIB is designed to support a variety of Bently Nevada probes, including Proximitor, Seismic, Accelerometer, and Velomitor probes. 

These probes are specialized for monitoring different aspects of turbine performance and mechanical conditions. Power Supply: Power for the vibration probes is supplied by the Vibration Monitor Board. The VVIB boards, operating in either Simplex or Triple Modular Redundant (TMR) mode, ensure a stable and reliable power supply to the connected probes. Probe Signal Processing: The signals from the vibration probes are transmitted, where they undergo processing. TVIB supports Proximitor, Seismic, Accelerometer, and Velomitor probes, and it is capable of handling signals from these sensors with precision. A/D Conversion: After receiving the probe signals, TVIB facilitates Analog-to-Digital (A/D) conversion. 

This process digitizes the analog signals from the probes into digital values, making them suitable for further processing and analysis. Communication with Controller: The digitized vibration signals are then sent over the VME bus to the controller. This communication pathway ensures that the processed data is efficiently transmitted to the central control system for real-time monitoring, analysis, and decision-making.

Installation

Power Down the Processor Rack: Before proceeding with the installation, ensure the processor rack is powered down. This precautionary measure prevents any potential electrical interference or disruptions during the installation process.

Slide in the Board: Carefully slide VVIB into the designated slot in the rack. Ensure that the board is aligned with the slot and smoothly insert it to establish proper connections.

Secure the Board with Levers: Once the board is correctly inserted, use your hands to push the top and bottom levers. These levers play a crucial role in securing the board firmly in place, establishing a reliable connection with the edge connectors within the rack.

Tighten Captive Screws: To further secure the board and prevent any unintended movement, tighten the captive screws located at the top and bottom of the front panel. Use an appropriate tool to ensure a snug fit without over-tightening.

Operation

Probe Compatibility: TVIB is designed to support a variety of Bently Nevada probes, including Proximitor, Seismic, Accelerometer, and Velomitor probes. These probes are specialized for monitoring different aspects of turbine performance and mechanical conditions.

Power Supply: Power for the vibration probes is supplied by the Vibration Monitor Board. The VVIB boards, operating in either Simplex or Triple Modular Redundant (TMR) mode, ensure a stable and reliable power supply to the connected probes.

Probe Signal Processing: The signals from the vibration probes are transmitted, where they undergo processing. TVIB supports Proximitor, Seismic, Accelerometer, and Velomitor probes, and it is capable of handling signals from these sensors with precision.

A/D Conversion: After receiving the probe signals, TVIB facilitates Analog-to-Digital (A/D) conversion. This process digitizes the analog signals from the probes into digital values, making them suitable for further processing and analysis.

Communication with Controller: The digitized vibration signals are then sent over the VME bus to the controller. This communication pathway ensures that the processed data is efficiently transmitted to the central control system for real-time monitoring, analysis, and decision-making.


  • User name Member Level Quantity Specification Purchase Date
  • Satisfaction :
No evaluation information
  • Honeywell Fusion4 MSC-L Multi Stream Loading Controller
  • Honeywell IPC 620-06 Programmable Controller
  • Honeywell Enhanced Micro TDC 3000 Control System
  • Honeywell Expert LS I/O System
  • Honeywell Expert PKS Universal Process Cabinet
  • KEBA KeConnect I/O: Modular Industrial Automation I/O System
  • KEBA FM 299/A GA1060 fieldbus main module
  • KEBA KeControl C1 CP 03x: Highly Integrated Embedded Industrial Controller
  • KEBA KeControl series controllers
  • KEBA KeConnect C5: High density modular IO system empowering industrial automation
  • KEBA DI 260/A Digital Input Module
  • Kollmorgen SERVOSTAR 600 (S600) series digital servo drive
  • Kollmorgen S300 Servo Drive Application Guide
  • Kollmorgen H series brushless servo motor and Silverline driver
  • Kollmorgen Servo System Product Guide
  • KOLLMORGEN S200 High Performance Compact Brushless Servo Drive
  • KOLLMORGEN IDC EC Series Electric Cylinder Configuration and Application Guide
  • Selection and Application of KOLLMORGEN E/H Series Stepper Motor
  • Kollmorgen AKD/S700 series servo drive
  • KOLLMORGEN Digifas-7200 Digital Servo Amplifier Application Guide
  • Kollmorgen SERVOSTAR-CD servo drive hardware installation and system configuration
  • MOOG QAIO 16/4 Analog I/O Module Technology Analysis and Application Guide
  • MOOG G128-809A DIN rail power supply
  • MOOG MSD Multi Axis Servo Drive System (DC-AC)
  • MOOG DM2020 Multi axis Servo Drive
  • MOOG M3000 ® Control system and MSC servo controller
  • MOOG G123-825-001 DIN rail buffer amplifier
  • MOOG Servo Electronics Products
  • MOOG T161 Series Rack Mount Digital Brushless Motor Controller
  • Motorola PTX series (PTX700/760/780) portable walkie talkies
  • MOTOROLA MVME2400 series VME processor module
  • MOTOROLA CPCI-6020 CompactPCI Single Board Computer
  • Motorola MVME162 Embedded Controller
  • Reliance Electric Engineering Drive System and DBU Dynamic Braking Unit
  • RELIANCE ELECTRIC INVERTRON DBU Dynamic Braking Unit
  • Reliance 57C413B/57C423 common memory module
  • Rockwell Automation AutoMax™ Distributed Power System
  • Reliance Electric AutoMax Programming Executive V3.5
  • Deep Analysis and Industrial Control Application of Reliance DCS 5000 Enhanced BASIC Language
  • Rockwell Automation MD60 AC Drive
  • COTEK SD Series Pure Sine Wave Inverter
  • RELIANCE ELECTRICI GV3000/SE AC General Purpose (Volts/Hertz) and Vector Duty Drive Version 6.06
  • ABB SACO16D1 Alarm Display Application Guide
  • REXROTH Indramat PPC-R Modular Controller Application Guide
  • REXROTH EcoDrive Cs series AC servo drive system
  • REXROTH IndraControl VEP Embedded Terminal Project Planning and Operation Guide
  • REXROTH IndraDyn S MSK series synchronous servo motor
  • REXROTH 4WRPEH series Directional control valves
  • REXROTH WE 6X series directional valve
  • REXROTH VT-HNC100... 3X Series Digital Axis Controller
  • REXROTH BTV04.2 Micro Control Panel Functions and Applications
  • REXROTH MKD Explosion proof Synchronous Motor Application Guide
  • REXROTH 4WRTE type electro-hydraulic proportional directional valve
  • REXRTOH IndraControl VDP series operation display
  • REXRTOH MSK series synchronous servo motor
  • REXRTOH ECODRIVE DKC Series Drive Controller Comprehensive Fault Diagnosis and Maintenance Guide
  • REXRTOH IndraDrive HMV01 series power supply unit
  • REXRTOH SE 200 Electric Tool Controller Details
  • REXRTOH INDRAMAT RAC 2 Spindle Drive Controller Application Guide
  • REXRTOH CDH1/CGH1/CSH1 series milling machine type hydraulic cylinder
  • REXRTOH MDD Digital AC Servo Motor Application Guide
  • REXRTOH DIAX04 Second Generation Driver Controller Application Guide
  • REXRTOH EcoDrive 03 Drive Controller
  • REXRTOH IndraDrive Controller CS Series Technical Analysis and Application Guide
  • REXRTOH A4VG series 40 axial piston variable displacement pump application guide
  • REXRTOH DDS02.1/03.1 Digital AC Servo Drive
  • REXRTOH VT-HPC Digital Pump Control
  • REXRTOH HNC100-3X Electro hydraulic Motion Control
  • ABB Advant Controller 250 Modular Controller
  • ABB QABP Low Voltage High Efficiency Variable Frequency Motor Application Guide
  • ABB Conductivity Analyzer Application Guide
  • ABB S500 Distributed Remote I/O System
  • ABB AC500 PLC Module Wiring Guide
  • ABB REG216 Digital Generator Protection System
  • Siemens SIRIUS Domestic Control and Protection System
  • Analysis and Application of Siemens SMART LINE V5 HMI Technology
  • SIEMENS CP 5613 A2/CP 5614 A2 Communication Processor
  • SIEMENS SIMOVERT MASTERDRIVES Vector Control Series
  • Siemens 5SN series terminal power distribution products: safe, efficient, and compact electrical solutions
  • Siemens SENTRON 5SY6106-7 miniature circuit breaker
  • Technical Analysis and Application Guide for Siemens SIMATIC TI505/TI500 MODNIM Module
  • Comprehensive Analysis and Configuration Guide for Siemens ET200SP Distributed I/O System
  • Technical Analysis and Application Guide for Siemens EG Frame Molded Case Circuit Breaker NEB/HEB Series
  • Siemens SENTRON 5SY Series Terminal Distribution Products Full Analysis: Innovative Technologies and Application Solutions
  • SIEMENS SIPROTEC 4 System: A Comprehensive Solution for Power Protection and Automation
  • Integration and Application of Siemens SIMO-MM3 Driver Control Block in PCS7 System
  • SINAMICS A10: Intelligent Servo Drive System with Integrated Safety and Efficient Debugging
  • Siemens SITOP UPS 1600/UPS 1100: High reliability DC uninterruptible power supply system for industrial automation
  • Comprehensive Analysis and Selection Guide for Siemens SICAM 8 Substation Automation Platform
  • Siemens SENTRON intelligent circuit protection equipment: full analysis of communication, measurement, and digital management
  • Siemens MOBY I RFID System Configuration and Application Guide
  • SIEMENS S7-1413 Communication Software Architecture and Application Detailed Explanation
  • SIEMENS SINUMERIK System 800 General Interface Technology Explanation and Configuration Guide
  • Siemens SINUMERIK 840C CNC System Installation and Debugging Guide
  • SIEMENS SIMATIC S5-115U Programmable Controller Comprehensive Analysis and Professional Application Guide
  • SIEMENS SIMATIC RF120C Communication Module Comprehensive Analysis and Application Guide
  • Comprehensive analysis and detailed explanation of key technologies for SIEMENS SIMADYN D hardware system
  • Comprehensive Analysis of Siemens TP/OP 170 Series Touch Screen and Operation Panel
  • SIMATIC MODNIM Module Deep Analysis: A Reliable Bridge for Industrial Modbus Communication
  • Comprehensive Analysis and Application Guide for SIEMENS S7-PLCSIM Advanced Simulation Software
  • Technical Analysis and Professional Operation Guide for SIEMENS 1FK6 Servo Motor
  • SIEMENS S7-300 PLC Beginner's Practice: From Hardware Installation to Program Debugging
  • In depth analysis and selection guide for SIEMENS 3AH3 vacuum circuit breaker technology
  • TEKTRONIX MSO5000 and DPO5000 series mixed signal oscilloscope
  • TOSHIBA DI Series Split Air Conditioner
  • TEKTRONIX 5A18N Dual Trace Amplifier
  • Toshiba Discrete IGBTs: Core Architecture, Technological Evolution, and Application Details
  • Foxboro G66 Triconex Tricon Termination Enclosure
  • Triconex Tricon v9-v11 fault-tolerant control system: triple module redundant architecture and high availability design
  • Tricon Triple-Modular Redundant Controller: TMR Architecture for Critical Process Safety
  • Triconex and Pepperl+Fuchs security solutions
  • TRICONEX Trident Controller
  • Woodward EM-80/EM-300 Electric Actuator Specification Guide
  • Woodward EM-80/EM-300 actuator system
  • SCHNEIDER Electric Magelis XBT Series HMI Product Comprehensive Guide and Technical Analysis
  • SCHNEIDER Magelis range Graphic XBT-F / TXBT-F Instruction Manual
  • SCHNEIDER XB2-B Ø 22mm series buttons, selection switches, and indicator lights
  • SCHNEIDER APC Back-UPS Pro Premium battery backup and surge protection for your critical devices
  • SCHNEIDER APC Back UPS Pro Series Uninterruptible Power Supply Complete Usage and Configuration Guide
  • User Guide for SCHNEIDER Service Interface (Part Number LV485500)
  • SCHNEIDER PowerPact ™ H. Modbus Communication User Guide for J and L-type Circuit Breakers
  • SCHNEIDER TeSys D Green series AC/DC universal contactor
  • SCHNEIDER mart series low-voltage distribution products
  • SCHNEIDER TeSys ® GV2/GV3 series motor circuit breakers
  • Schneider Electric ComPacT NSX DC Circuit Breaker Full Solution and Application Guide
  • SCHNEIDER Resi9 The ultimate in residential circuit protection
  • SCHNEIDER Modicon Premium Automation Platform and Unity Software
  • SCHNEIDER Quantum Safety PLC: Complete Analysis of SIL3 Safety Control System