Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:
  • GE IS420PVIBH1B - IO PACK, VIBRATION
    ❤ Add to collection
  • GE IS420PVIBH1B - IO PACK, VIBRATION

    110V-380V
    1A-30A
    5W-130W
    1 year
    30
    United States, France, Japan, Viet Nam, Australia, Russia, Germany, Italy, Arabia
    IS420PVIBH1B - IO PACK, VIBRATION
    • ¥12000.00
      ¥24520.00
      ¥12000.00
      ¥12000.00
    • Satisfaction:

      Sales: 0

      Review: 0

    Weight:3.600KG
    • Quantity:
    • (Inventory: 33)
Description
IS420PVIBH1B - IO PACK, VIBRATION

GE IS420PVIBH1B - IO PACK, VIBRATION

OVERVIEW

Product Definition and Function: The GE IS420PVIBH1B - IO PACK, VIBRATION is an input/output (I/O) module combination for vibration monitoring. In the field of industrial automation and equipment monitoring, it is mainly used to acquire vibration-related signals, such as signals from accelerometers and other vibration sensors, and can initially process and transmit these signals to a control system for further analysis and decision-making. At the same time, the module may also have certain output functions for triggering alarms or simple interaction with other devices.

Working Principle

Signal acquisition process (input part)

Sensor signal access: the module has a dedicated input channel for connecting vibration sensors, commonly accelerometers. The accelerometer converts the vibration of the device into an electrical signal (usually a voltage signal), the size of which is proportional to the acceleration of the vibration. For example, accelerometers are installed in the bearing housing of rotating machinery (e.g., turbines, motors, etc.), and when the equipment operates to produce vibration, the accelerometer outputs a corresponding voltage signal.

Signal conditioning and amplification: When the vibration sensor signal enters the module, it will first pass through the signal conditioning circuit. As the vibration sensor output signal may be relatively weak, the signal conditioning circuit will amplify it, so that the signal reaches a level suitable for subsequent processing. At the same time, the signal conditioning also includes a filtering operation to remove noise and interference components in the signal, such as high frequency noise generated by electromagnetic interference (EMI) in industrial sites. The amplified and filtered signal is cleaner and easier to process.

Analogue - Digital Conversion (A/D Conversion): The conditioned analogue signal is fed into the analogue - digital conversion circuitry.A/D conversion is the process of converting a continuous analogue signal into a discrete digital signal. The module's A/D converter usually has a high resolution, e.g. 12 - 16 bits. This means that it is possible to quantise analogue signals into different digital values, thus enabling highly accurate signal conversion. During the conversion process, the analogue signal is sampled according to a preset sampling frequency, which can be adjusted according to the requirements of the application in order to balance the signal accuracy and the amount of data to be processed. The converted digital signals are stored in the form of binary code in the internal registers of the module, waiting for further processing.

Signal transmission and processing

Data transmission to the control system: The digital signals stored in the registers are transmitted to the control system via the internal communication interface (e.g. industrial Ethernet, Profibus, etc.). During transmission, the module ensures the integrity and accuracy of the signals, e.g. by adding checksums to prevent data transmission errors. After receiving these digital vibration signals, the control system performs more complex signal processing, such as spectrum analysis, feature extraction, etc., to determine whether the vibration status of the equipment is normal.

Internal Processing and Alarm Functions (if any): Within the module, some simple signal processing may also be performed. For example, a threshold comparison of digital signals is performed. When the vibration signal exceeds the preset safety threshold, the module can directly trigger a local alarm, such as lighting an alarm indicator or sounding an audible alarm. This local alarm function can provide an immediate warning message in the event of a control system malfunction or communication breakdown.

Signal output process (if any)

Receive control commands (if available): The output portion of the module (if available) may receive control commands from the control system. These commands may be based on the results of an analysis of the vibration signals, e.g. the control system sends commands to the module when it determines that the vibration is abnormal and action needs to be taken.

Signal Driving and Output (if available): Based on the received control instructions, the module's output circuitry generates corresponding output signals. For example, if the instruction is to trigger an external alarm device, the module will output sufficient current and voltage to drive the alarm (e.g., sound and light alarm); if it is to interact with other devices, the output signals may be used to control the state of other devices (e.g., to control the suction or release of a relay).

Performance Features

High-precision vibration signal acquisition: During signal acquisition, the vibration sensor signals can be accurately acquired due to its high-precision A/D conversion (accuracy up to ±0.1% - ±0.5% full-scale accuracy) and effective signal conditioning. This is important for accurately monitoring the vibration status of equipment, such as in high-precision vibration monitoring of rotating machinery, where small changes in vibration can be accurately measured.

Multi-Channel Input Function (if available): may have multiple vibration signal input channels to facilitate simultaneous acquisition of vibration signals from multiple locations. For example, in the vibration monitoring of large equipment (e.g., generator sets), vibration signals from different bearing positions and directions can be collected simultaneously, thus providing a more comprehensive understanding of the vibration of the equipment.

Strong anti-interference ability: Through good signal conditioning (filtering and other operations) and error correction mechanisms in the communication protocol, it can effectively resist electromagnetic interference and noise interference in the industrial environment. This ensures that vibration signals can still be accurately collected and transmitted in complex industrial sites, such as factory floors, power stations and other environments.

Good compatibility with control systems: It supports a variety of industrial communication protocols (e.g. Industrial Ethernet, Profibus, Modbus, etc.) and can easily communicate with control systems of different manufacturers. This makes it easy to be integrated into existing industrial automation monitoring systems, achieving seamless integration and sharing of vibration monitoring data.

Technical Parameters

Input parameters

Number of analogue input channels (if any): the number of channels may vary from 4 - 16 depending on the module model, each channel is used to receive an analogue signal from a vibration sensor.

Input signal type and range: Primarily receives voltage signals from vibration sensors (e.g. accelerometers), the signal range may be in the common analogue signal ranges of - 10V - + 10V or 0 - 10V to suit the output of different sensors.

Input Signal Resolution (Analogue Input): The analogue input channels can have a resolution of 12 - 16 bits, the higher resolution allows for more accurate acquisition of analogue signals.

Conversion parameters (A/D conversion)

A/D Conversion Accuracy: Conversion accuracy of ±0.1% - ±0.5% full scale accuracy ensures highly accurate signal conversion.

Sampling Frequency Range: The sampling frequency range is wide, generally ranging from several thousand times per second to several hundred thousand times per second, which can be set according to the actual application requirements. For example, for low-frequency vibration monitoring, a lower sampling frequency may be used; while for high-frequency vibration monitoring, such as high-speed rotating machinery vibration monitoring, a higher sampling frequency may be used.


  • User name Member Level Quantity Specification Purchase Date
  • Satisfaction :
No evaluation information
  • XYCOM MOTION 1300-00010000000000H Operating Interface 100-120 VAC
  • Xycom Automation XT1502T Pro Face
  • XYCOM PRO-FACE 1547 (1547-0011310130000)
  • PRO-FACE XYCOM 1546 Heavy Industrial PC 1546-102011010001
  • PRO-FACE XYCOM 1546 Heavy Industrial PC 1546-1020310130001
  • XYCOM Automatic 9987 Operating Interface PN.9987-3338-2100 Computer Board
  • PHILIPS PG 1220 SERIES WITH CPU BOARD, XYCOM XVME-491 , CNC SERVO CONTROLLER
  • XYCOM 3512KPT 139649-002A DHL
  • XYCOM XVME-202 Controller Module Board
  • Xycom Automation Pro-face Model 4115T Pentium 4 2GHz 640KB RAM
  • PRO face Xycom 1341 egemin PM-070016 computer P/N 701301-01
  • Xycom 2050T interface workstation 1.12/. 70AMP 110/240Vac 12
  • XYCOM 1546 PROFACE Industrial Computer with RS View 32 Batch Q302
  • PRO-FACE XYCOM 1546 Heavy Industrial PC 1546-1120310130001
  • Xycom Automation XT1502T Pro Face LAT PANEL INDUSTRIAL MONITOR
  • Xycom Pro Face 1546 Industrial Computer 2000-1000-DVDW-XP
  • Xycom Automation XT1502T FLAT PANEL INDUSTRIAL MONITOR
  • XYCOM AUTOMATION 1300-0001000000000 100-240VAC 0.5A UNMP
  • Xycom 2000T 97957-101 97957101 Operator Interface Panel with 2112-MEM
  • LCD monitor upgrade for 14 inch Xycom 9450 and Xycom 9403 control with cable kit
  • Xycom 2060 LCD Upgrade Monitor with Cable Kit 12 inches
  • Xycom 9450 14-inch LCD monitor upgrade with Cable Kit
  • XYCOM XVME-956 Optical Disc Module XVME956
  • XYCOM Pro-Face 3712 KPM Industrial PCs
  • XYCOM XVME-400 70400-001 card
  • Xycom 3515 KPM PM101906 Operator Interface
  • Xycom AOUT XVME-530 P/N 70530-001 FREV 2.2L
  • Xycom XVME-100 RAM Memory Module
  • GE SR489-P5-LO-A20-E relay protection
  • KONGSBERG DPS132 positioning system host navigation ship
  • PRO-FACE XYCOM 1546 Heavy Industrial PC 1546-1020310130001
  • Xycom XVME-660 processor module 70660-716
  • Xycom 10330-00800 board
  • XYCOM 4860 A PLC
  • Xycom 81625DA control board 81625
  • Allen Bradley 91195A circuit board programmable for A-B Xycom terminals
  • Xycom 94354-001 display screen 94354001 8503 HMI front panel
  • XYCOM 8100-0272A Brown Output Sensor Board
  • Xycom 9485 Automatic CY
  • Xycom XVME-244 DIO Digital Input/Output Card Module 70244-001 VME Bus
  • XYCOM XVME-400 70400-001 card
  • ADEPT TECH/XYCOM 70244-702 10330-00800 PC board
  • XYCOM AIO XVME-540 Analysis of I/O Module
  • XYCOM 2050 Warranty&Extended Technical Support
  • XYCOM 81625DA Control Board
  • XYCOM 70600-001 PC board 70600001 REV 1.4
  • Xycom XVME-979 Rev. 1.1 CD-ROM/HDD/FDD interface card/module suitable for MV controller
  • XYCOM XVME-100 70100-001 card
  • PHILIPS PG 1220 SERIES WITH CPU BOARD, XYCOM XVME-491 , CNC SERVO CONTROLLER
  • Xycom 96574-001 module circuit board 96529-001 8503 PCB PWA programmable
  • ABB 3BDH000031R1 FI 820F Fieldbus Module Serial
  • ABB SPHSS13 Hydraulic Servo Module
  • ABB CB801 3BSE042245R1 PROFIBUS DP panel
  • ABB 57120001-P DSAI 130 Analog Input Board
  • ABB 086329-003 ECS BOARD Digital Input Module
  • ABB 086349-002 Industrial Control Circuit Board
  • ABB 086345-504 digital output module
  • ABB PFCL201C 10KN Tension Controller
  • ABB 3HAC17484-otational ac motor M8
  • ABB 5SHY3545L0009 High Voltage Converter Board
  • ABB 64009486 NPCT-01C; PULSE COUNT/TIMER
  • ABB HESG324013R0101 216AB61 BINARY OUTPUT * NCS1704
  • ABB 5SHX1060H0003 Reverse Conducting Integrated Gate-Commutated Thyristor
  • ABB Advant Controller 31 Series 07 KT 97/96/95 Basic Unit Hardware
  • ABB C310/0020/STD Wall-/Pipe-mount Universal Process Controller
  • ABB REF610 feeder protection relay Fault recording and communication function
  • ABB REF610 Feeder Protection Relay
  • ABB 3HAC022286-001 Serial measurement unit DSQC 633
  • ABB DSQC332A Digital I/O Module
  • ABB HIEE205010R0003 UNS 3020A-Z, V3 Ground Fault Relay
  • ABB F360 X Residual current operated circuit-breakers (RCCB)
  • ABB SK616001-A contact block
  • ABB 22mm series industrial control component models
  • ABB 1SFC261001-EN 22mm series industrial control components
  • ABB 3HAC0977-1 Resistor 10 Ohm 50W
  • ABB S503X Circuit Breaker
  • ABB S500 series miniature circuit breaker
  • ABB BC25-30-10-01 CONTACTOR
  • ABB Contactor Series Operating Instructions
  • ABB DSQC504 connector unit board
  • ABB DSQC509 Industrial Automation Module
  • ABB DSQC346B - Modular I/O System
  • ABB 3HAB8859-1/03A Industrial Control Module
  • ABB ACS800 Standard Control Procedure 7. x
  • What are the common faults and solutions for MLink interface modules?
  • ABB MNS iS System MLink 1TGE120021 Interface Module
  • ABB 3BHS600000 E80 RevF Service Manual PCS6000
  • ABB PCS6000 SYSTEM DRIVES
  • ABB 3HAC5518-1 Industrial Control Module
  • ABB 3HAC5497-1 Industrial Control Module
  • ABB 3HAC7344-1 Main Line Filter Unit
  • ABB 3HAC7681-1 connection harness
  • ABB 3HAC6428-1/04 high-performance control module
  • ABB 3HAC6157-1- High Performance Industrial Control Modules
  • ABB 3HAC10847-1 Industrial Control Module
  • ABB 3HAC5566-1 Industrial Control Module
  • ABB 3HAC9710-1 Robot Heat Exchanger Unit
  • ABB SPBLK01 Blank Faceplate
  • ABB IMDSM04 pulse input slave module
  • ABB INIIT03 Interface Modules
  • ABB IMFEC11/12 Analog Input Module
  • ABB IMDSO14 Digital Output Module
  • ABB NIT03 control module
  • ABB INNIS21 Network Interface Slave module
  • ABB IMBLK01 module
  • ABB 3HAC031683-004 teaching pendant cable
  • ABB SPBRC300 Controller
  • ABB PFXA401SF as a unit module
  • ABB HAC319AEV1 high-performance control module
  • ABB HIEE450964R0001 SA9923A-E circuit board
  • ABB CSA463AE HIE400103R0001 Industrial Automation Module
  • ABB UAC326AE HIEE401481R0001 excitation system module
  • ABB NU8976A High Performance Digital I/O Module
  • Alstom 43297029 Control Module Card
  • ALSTOM PIB1201A 3BEC0067- High precision industrial power supply
  • Alstom PIB310 3BHB0190 control module
  • Alstom PIB102A 3BEB0180 control board
  • ALSTOM PIB100G 3BE0226 Control Board
  • Alstom BGTR8HE 24491276A1004 Industrial Control Module
  • Alstom LC105A-1 Industrial Control Module
  • Alstom AL132 control board module card
  • Alstom IR139-1 module card
  • Alstom AM164 control board
  • ABB IGBT MODULE KIT FS450R17OE4/AGDR-71C S TIM FOIL SP 3AXD50000948185
  • ABB IGBT MODULE KIT FS300R12KE3/AGDR-71C S 68569346
  • ABB IGBT MODULE KIT FS450R17KE3/AGDR-72C S 68569427
  • ABB IGBT MODULE KIT FS450R17KE3/AGDR-71C S 68569591
  • ABB IGBT MODULE KIT FS300R17KE3/AGDR-76C S 68569362