Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:
  • GE IS420UCSBH1A Mark VIe Controller
    ❤ Add to collection
  • GE IS420UCSBH1A Mark VIe Controller

    110V-380V
    5W-130W
    1A-30A
    1 year
    30
    United States, France, Japan, Viet Nam, Australia, Russia, Germany, Italy, Arabia

    GE IS420UCSBH1A Mark VIe Controller

    • ¥22500.00
      ¥24520.00
      ¥22500.00
      ¥22500.00
    • Satisfaction:

      Sales: 0

      Review: 0

    Weight:3.600KG
    • Quantity:
    • (Inventory: 33)
Description

GE IS420UCSBH1A Mark VIe Controller


GE IS420UCSBH1A Mark VIe Controller

Product Overview

The IS420UCSBH1A is one of the Mark VIe system controllers designed to control water, gas and steam turbine systems. It is one of five available UCSB (Universal Control and Safety Board) modules and offers excellent performance and stability to meet the control needs of a wide range of complex industrial environments.

Technical Specifications

Processor: 600 MHz Intel EP80579 microprocessor to provide powerful computing power.

Memory: 256 MB DDR2 SDRAM memory with flash support SRAM, ensuring fast data access and processing.

Operating System: QNX Neutrino OS with support for control block languages (analogue and digital) provides a flexible control and programming environment.

Communication interfaces:

Three Ethernet ports for connection to R/S/T I/O networks.

Three additional ENET ports for connection to HMMI (Human Machine Interface), other controllers, historical databases and peer-to-peer connections.

One USB port for easy data transfer and debugging.

Power supply: Built-in power supply eliminates the need for an external power supply, simplifying installation and maintenance.

Size and Weight: With a footprint of 6.4‘ x 8.1’ x 1.4’ and a weight of 2.4 lbs (excluding shipping packaging), it is small, lightweight and easy to install.

Operating temperature: -22 to 149 degrees Fahrenheit (-30 to 65 degrees Celsius), adaptable to a variety of industrial environments.

Functional Features

Data Acquisition and Processing: Capable of acquiring data from a variety of sensors, instruments and monitoring equipment, and carrying out operations such as filtering, amplification, digitisation and calibration to ensure the accuracy and reliability of the data.

Real-time monitoring and control: real-time monitoring of equipment and system status, as well as monitoring of various key parameters, timely identification of abnormalities or failures, and take appropriate control measures.

Communication and data exchange: Communicate and exchange data with other equipment and monitoring systems through Ethernet, USB and other interfaces to achieve information sharing and collaborative work.

Modular design: Adopting modular design, it is convenient for users to expand and customise functions according to their needs to adapt to different monitoring and control tasks.

High reliability: conforming to industrial standards, it has high reliability and durability and is suitable for various harsh industrial environments.

Application Areas

GE IS420UCSBH1A Mark VIe Controller is widely used in industrial automation, power system monitoring, equipment condition monitoring, fault diagnosis, data acquisition and process control. It can provide stable and reliable control and monitoring solutions for various industrial processes.

Precautions

When using the IS420UCSBH1A controller, ensure its compatibility and match with the system.

Regularly check and maintain the controller to ensure its normal operation and prolong its service life.

During installation and commissioning, the installation guide and operation manual provided by GE should be followed to ensure proper installation and configuration.

Controller Classification

Controllers are divided into combinational logic controllers and microprogrammable controllers, the two kinds of controllers have their own strengths and weaknesses. Combination logic controller design trouble, complex structure, once the design is completed, it can not be modified or expanded, but it is fast. Microprogrammed controller design is convenient, simple structure, modification or expansion are convenient, modify the function of a machine instruction, only need to reprogramme the corresponding microprogramme; to increase a machine instruction, only need to add a section of microprogramme in the control memory, but it is through the execution of a section of microprogramme. Specific comparisons are as follows: combinational logic controllers, also known as hard-wired controllers, are composed of logic circuits and rely entirely on hardware to implement the function of the instruction.

Basic Functions

Data buffering: Since the rate of I/O devices is low while the rate of CPU and memory is high, a buffer must be set up in the controller. In the output, this buffer is used to store the data coming from the host at high speed, and then the data in the buffer will be transmitted to the I/O device at the rate of the I/O device; in the input, the buffer is used to store the data coming from the I/O device, and then the data in the buffer will be transmitted to the host at high speed after a batch of data has been received.

Error control: The device controller also manages error detection of data sent from I/O devices. If an error is found in the transmission, the error detection code is usually set and reported to the CPU, which then cancels the transmitted data and transmits it again. This ensures the correctness of the data input.

Data exchange: This refers to the realisation of data exchange between the CPU and the controller, and between the controller and the device. For the former, it is through the data bus, by the CPU in parallel to write data into the controller, or from the controller in parallel to read out the data; for the latter, it is the device will be the data input to the controller, or from the controller to the device. For this purpose, data registers have to be set up in the controller.

Status Description: Identifies and reports the status of the device The controller shall note down the status of the device for the CPU to know. For example, the CPU can start the controller to read data from the device only when the device is in a transmit-ready state. For this purpose, a status register shall be set up in the controller with each bit therein reflecting a particular state of the device. When the CPU reads in the contents of this register, it will know the state of the device.

Receive and recognise commands: The CPU can send many different commands to the controller, and the device controller should be able to receive and recognise these commands. To this end, there should be a corresponding control register in the controller to store the received commands and parameters, and decode the received commands. For example, the disk controller can receive Read, Write, Format and other 15 different commands from the CPU, and some commands also have parameters; accordingly, there are several registers and command decoders in the disk controller.

Address recognition: Just as each unit in memory has an address, so does each device in the system, and the device controller must be able to recognise the address of each device it controls. In addition, in order for the CPU to be able to write to (or read from) registers, these registers should all have unique addresses.


  • User name Member Level Quantity Specification Purchase Date
  • Satisfaction :
No evaluation information
  • YOKOGAWA AQ23011A/AQ23012A Modular Framework Equipment
  • YOKOGAWA DLM3054HD Mixed Signal Oscilloscope
  • YOKOGAWA CW500 Power Quality Analyzer
  • How to troubleshoot the YOKOGAWA CA500/CA550 multifunctional process calibrator?
  • How to maintain YOKOGAWA AQ7420 High Resolution Reflectometer?
  • YOKOGAWA FG410/FG420 arbitrary waveform editor
  • How to check the packaging and accessories of Yokogawa Model 701905 conversion cable?
  • YOKOGAWA MY600 Digital Insulation Resistance Tester
  • YOKOGAWA AQ7290 Series Optical Time Domain Reflectometer OTDR
  • How to ensure the safety and maintenance of YOKOGAWA LS3300 AC power calibrator?
  • Yokogawa AQ6377E Optical Spectrum Analyzer Remote Control
  • Yokogawa AQ6361 Optical Spectrum Analyzer
  • Yokogawa IS8000 Integrated Software ECU Monitoring and Synchronization Function
  • Yokogawa ROTAMASS TI Coriolis Mass Flow Meter
  • Yokogawa ROTOMETER RAMC Metal Variable Area Flow Meter
  • Yokogawa SL1000 high-speed data acquisition unit input module
  • How to install and wire the Yokogawa FLXA402T turbidity and chlorine liquid analyzer?
  • Yokogawa WTB10-DO Series Dissolved Oxygen Measurement System Terminal Box
  • Yokogawa Model 702928 PBD0200 Differential Probe
  • YOKOGAWA ADMAG TI Series AXW Electromagnetic Flow Meter (25-450mm) Installation and Operation
  • How to troubleshoot YOKOGAWA ADMAG TI series AXW electromagnetic flowmeter (25-1800mm)?
  • How to install YOKOGAWA DO30G dissolved oxygen sensor?
  • YOKOGAWA SC4AJ Conductivity Sensor Manual
  • YOKOGAWA SC210G Conductivity Detector
  • How to install and wire Yokogawa PH4/OR4 series pH and ORP sensor (IM12B10B00-01EN)?
  • How to troubleshoot Yokogawa OR8EFG KCl filled ORP sensor (IM12C07J01-01E)?
  • YOKOGAWA FU24 pH/ORP Composite Sensor with Pressure Compensation (IM 12B06J03-03EN-P)
  • Yokogawa SC200 Intelligent Two Wire Conductivity Transmitter System (IM12D08B01-01E)
  • YOKOGAWA CENTUM VP Integrated Production Control System (TI33J01A10-01EN)
  • ABB AO2000-LS25 Laser Analysts User Manual
  • YOKOGAWA FA-M3 positioning module (with analog voltage output)
  • YOKOGAWA FA-M3 Series Basic Modules
  • YOKOGAWA EJA110E Diff erential Pressure Transmitter
  • Zygo 3D Optical Profiler
  • How to unpack and install the Zygo Mark II 4-inch interferometer system?
  • Zygo NewView 9000 3D Optical Profilometer Technology Advantages
  • Zygo NewView 9000 3D Optical Profilometer Technology
  • Zygo Profilometer Standard Operating Procedure
  • Zygo’s Guide to Typical Interferometer Setups
  • ZYGO Laser Interferometer Accessory Guide OMP-0463AM
  • ZYGO MetroPro 9.0 Reference Guide (OMP-0347M)
  • Zygo Device Standard Operating Procedure (SOP)
  • Zygo Verify Laser Interferometer Product Highlights
  • Zygo MicroLUPI Micro Hole Diameter Laser Unequal Path Interferometer
  • ZYGO ZMI-1000 Displacement Measuring Interferometer System
  • Zygo’s ZMI 2000 System Displacement Measuring Interferometer Systems
  • ABB IGCT Technology: A Revolutionary Breakthrough in High Voltage Inverters
  • Siemens 6AG1204-2BB10-4AA3 Ethernet Switch
  • Siemens 6ES7193-4JA00-0AA0 Terminal Module
  • Siemens ET200SP 6ES7193-6PA00-0AA0 server module
  • Siemens 6ES7231-0HC22-0XA0 Analog Input Expansion Module
  • Siemens 6ES7350-2AH01-0AE0 Counter Module
  • Siemens 6ES7421-7DH00-0AB0 Digital Input Module
  • Siemens 6AV2124-2DC01-0AX0 Comfort Panel
  • Siemens 6ES7193-4CA40-0AA0 ET 200S Electronic Module
  • STOBER POSIDRIVE ® How to install MDS 5000?
  • Siemens 7XV5653-0BA00 dual channel binary signal transmitter
  • Thinklogical Velocity KVM-34 series KVM fiber extender
  • Watlow MLS300 Series Controller
  • ​DHR NLS3000 NLC System (Navigation Control System)
  • Watlow Anafaze CLS200 Series Controller
  • CyberPower UT650EG / UT850EG User’s Manual
  • Thermal Solutions EVS series gas regulated boilers
  • Bosch Rexroth HM20 Hydraulic Pressure Sensor
  • ABB SPAU 341 C Voltage Regulator
  • Rockwell Automation 1585 Ethernet Media
  • Rockwell Automation SmartGuard 600 Controller
  • Rockwell Automation 1756 ControlLogix Communication Module
  • Rockwell Automation Stratix series Ethernet devices
  • A-B Ultra3000 and Ultra5000 with DeviceNet
  • ABB INNIS21 Network Interface Slave module
  • DEIF Undervoltage and overvoltage relay type RMV-112D
  • SAUTER AVM 234S valve actuator (with positioner)
  • REXRTOH INDRAMAT TVD 1.3 power module
  • Honeywell Expert Series-C I/O Module
  • GE PACSystems RX7i power module (IC698PSA100/350 series)
  • Yokogawa AFV40S/AFV40D Field Control Unit (FCU)
  • Schneider 31H2S207 FBM207/b/c Voltage Monitor/Contact Sense Input Modules
  • Emerson DeltaV™ S-series Traditional I/O
  • MKS Type T3B Butterfly Valve (with DeviceNet Interface)
  • Triconex 3624 Digital Output Module
  • ABB 3BSE031151R1 PM865K01 Processor Unit HI
  • GE V7768 VME Single Board Computer
  • HIMatrix F30 01 Safety-Related Controller
  • TOSHIBA Welker Bearing Linear Guides and Wedge Components
  • GE Multilin MIF series digital feeder relay
  • ABB MNSiS Motor Control Center MConnect Interface
  • Emerson PR6426 32mm Eddy Current Sensor
  • Schneider ELAU PacDrive C400/C400 A8 Controller
  • Yokogawa Motor YS1700 Programmable Indicator Controller
  • Honeywell Searchline Excel Infrared Open Circuit Gas Detector
  • Rockwell Automation ICS AADvance Controller
  • ABB Relion ® 615 series RED615 line differential protection and control device
  • DEIF PPU-3 Parallel and Protection Unit
  • Foxboro PBCO-D8-009 Terminal Board (TB)
  • ASEM HT2150/QT2150 Fanless Panel Control Computer (IPC)
  • ABB FOUNDATION ™ Fieldbus Link Device LD 810HSE Ex V1.0
  • ABB Panel 800 Version 6 PP885 Hardware and Installation
  • Konica Minolta CM-3700A-U Plus spectrophotometer
  • Schneider FBM233 Field Device System Integrator Module
  • MTL 8502-BI-DP Bus Interface Module (BIM)
  • ABB DO880 Ability ™ System 800xA ® hardware selector
  • GE VMIVME-2540 24 channel intelligent counter/controller
  • GE VMIVME-3115-010 32-Channel 12-bit Analog Output Board
  • GE Fanuc Automation VMIVME-4140 32-Channel 12-bit Analog Output Board
  • BENTLY 1900/65A General Purpose Equipment Monitor
  • REXROTH Digital axis control HNC100
  • GE Grid Solutions 369 Series
  • ZYGO ZMI 7702 laser head
  • ZYGO ZMI 501A shell
  • ABB PFEA111-65 Tension Electronic Equipment
  • Allen Bradley 1753 Series GuardPLC 1800 Controller
  • Allen Bradley 1747-DCM Direct Communication Module
  • Allen Bradley 1746-NI8 SLC 500 Analog Input Module
  • Allen Bradley 1734 series POINT I/O common terminal module and voltage terminal module
  • Allen Bradley 150 Series SMC Dialog Plus Controller
  • Allen Bradley 1494V series variable depth flange mounted isolation switch
  • AB Allen Bradley 1492 series terminal block
  • Allen Bradley 1485 Series DeviceNet Media System
  • Allen Bradley 1391-DES series digital AC servo drive
  • Allen Bradley 1336 PLUS II Adjustable Frequency Driver
  • Allen Bradley 1336 IMPACT AC Inverter
  • Allen Bradley 1326AB high-performance AC servo motor
  • Allen Bradley DeviceNet Communication Module (1203-GK5/1336-GM5)
  • Allen Bradley 1203-CN1 ControlNet Communication Module
  • Rockwell Automation PanelView Standard Series Terminal (Model 2711)
  • Siemens SIMATIC S7-300 Digital Output Module (6ES7322-1BH01-0AA0)
  • Siemens SIMATIC S7-300 Digital Input Module (6ES7321-1BH02-0AA0)