Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:
  • ABB 3HAC5498-1 High-Performance Control Module
    ❤ Add to collection
  • ABB 3HAC5498-1 High-Performance Control Module

    110V-380V
    5W-130W
    1A-30A
    1 year
    30
    United States, France, Japan, Viet Nam, Australia, Russia, Germany, Italy, Arabia

    ABB 3HAC5498-1 is a high-performance control module designed for mid to high end industrial automation control scenarios. Its core belongs to the ABB robot main control system (such as IRC5 advanced version) and complex industrial equipment control system, mainly responsible for multi axis synchronous motion control, complex logic operation, high-precision process parameter adjustment, and multi equipment collaborative scheduling tasks. As the "computing core" of industrial automation systems, it can achieve microsecond level control instruction response and nanometer level positioning accuracy, while supporting multi protocol fusion communication and redundant design, adapting to scenarios with strict requirements for control accuracy, real-time performance, and reliability, and providing core control support for high-end manufacturing, precision machining, and other fields.



    • ¥8366.00
      ¥8457.00
      ¥8366.00
      ¥8366.00
    • Satisfaction:

      Sales: 0

      Review: 0

    Weight:6.300KG
    • Quantity:
    • (Inventory: 99999)
Description

ABB 3HAC5498-1 is a high-performance control module designed for mid to high end industrial automation control scenarios. Its core belongs to the ABB robot main control system (such as IRC5 advanced version) and complex industrial equipment control system, mainly responsible for multi axis synchronous motion control, complex logic operation, high-precision process parameter adjustment, and multi equipment collaborative scheduling tasks. As the "computing core" of industrial automation systems, it can achieve microsecond level control instruction response and nanometer level positioning accuracy, while supporting multi protocol fusion communication and redundant design, adapting to scenarios with strict requirements for control accuracy, real-time performance, and reliability, and providing core control support for high-end manufacturing, precision machining, and other fields.




ABB 3HAC5498-1 High-Performance Control Module

Product Overview

ABB 3HAC5498-1 is a high-performance control module designed for mid to high end industrial automation control scenarios. Its core belongs to the ABB robot main control system (such as IRC5 advanced version) and complex industrial equipment control system, mainly responsible for multi axis synchronous motion control, complex logic operation, high-precision process parameter adjustment, and multi equipment collaborative scheduling tasks. As the "computing core" of industrial automation systems, it can achieve microsecond level control instruction response and nanometer level positioning accuracy, while supporting multi protocol fusion communication and redundant design, adapting to scenarios with strict requirements for control accuracy, real-time performance, and reliability, and providing core control support for high-end manufacturing, precision machining, and other fields.

This module adopts high-performance hardware architecture and industrial grade enhanced protection design, and is seamlessly compatible with ABB series servo drives, high-precision sensors, and third-party high-end automation equipment. It is widely used in fields such as automotive welding robots, aviation parts processing machines, semiconductor manufacturing equipment, etc. It is a key component to ensure stable and efficient operation of highly complex industrial production processes.


Specification parameters

Basic Information

Model: 3HAC5498-1 Series: ABB High end Industrial Control Series Type: High performance Multi axis Motion Control and Logic Control Integrated Module

Adapt to ABB's high-end robots and complex industrial equipment main control

Computational performance

Main processor: 64 bit dual core industrial grade CPU, main frequency 1.5GHz, floating point computing capability: 2.5 GFLOPS, logical computing speed: 1200 instructions/μ s, program storage capacity: 16GB high-speed flash memory (expandable to 64GB), data cache capacity: 4GB DDR4 RAM (supports ECC verification)

Meet the real-time computation requirements of complex control algorithms such as 5-axis interpolation and adaptive PID

Control ability

Maximum number of control axes: 24 axes (servo motor/stepper motor, supporting axis group linkage) Control accuracy: ± 0.0005mm (position control), ± 0.005rad/s (speed control) Motion modes: point control, linear interpolation, arc interpolation, spatial surface interpolation, electronic cam PID control: supports position/incremental/adaptive PID, supports feedforward control and filtering algorithms

Suitable for high-end robots, precision machine tools, and other multi axis high-precision control scenarios

Signal interface

Analog Input (AI): 16 differential inputs, supporting 4-20mA/0-10V/± 10V, resolution 24 bit Analog Output (AO): 8 channels, supporting 4-20mA/0-10V, accuracy ± 0.02% Digital Input (DI): 32 channels, supporting 24VDC wet/dry contacts, response time ≤ 1 μ s Digital Output (DO): 16 channels, transistor output( 2A@24VDC Encoder interface: 8 channels, supporting incremental encoders (A/B/Z phase, 2MHz maximum frequency), absolute value encoders (SSI/Profinet protocol), and grating ruler signals

High resolution analog interface compatible with precision sensors, high-speed digital interface supporting high-frequency signal acquisition

Communication and Networking

Communication protocols: Profinet IRT, EtherCAT (synchronization period ≤ 100 μ s), Modbus TCP, CANopen FD, ABB dedicated real-time communication protocol Interface types: 2 Gigabit Ethernet ports (RJ45, supporting dual network redundancy), 2 EtherCAT master station interfaces, 1 RS485 serial port, 1 USB 3.0 interface Communication latency: ≤ 1 μ s under Profinet IRT protocol, ≤ 10 μ s under EtherCAT protocol

Support real-time industrial Ethernet to meet the microsecond level synchronous control requirements of multiple devices

Power supply and power consumption

Working power supply: 24VDC (± 10%)/48VDC (± 10%) optional Typical power consumption: 25W (full load operation) Maximum power consumption: 40W Power protection: overvoltage protection (36VDC/60VDC trigger), overcurrent protection (3A trigger), reverse connection protection, surge protection (compliant with IEC 61000-4-5, 10kA surge current)

Wide voltage input suitable for different power supply scenarios, multiple protections ensure safe operation of the module

Environmental adaptability

Working temperature: -30 ℃ to 70 ℃ Storage temperature: -40 ℃ to 85 ℃ Relative humidity: 5% -95% (no condensation, at a temperature of 40 ℃) Vibration level: IEC 60068-2-6, 10-500Hz, 8g Acceleration impact level: IEC 60068-2-27, 50g Acceleration (11ms duration) Protection level: IP20 (module body), IP67 (front-end connector with metal sealed joint)

Resistant to extreme industrial environments, suitable for harsh working conditions such as high temperature, high vibration, and humidity

Physical specifications

Size: 220mm x 180mm x 75mm (length x width x height) Weight: 2.8kg Installation method: DIN rail installation (compatible with 35mm standard rail), screw fixed installation (with shock-absorbing pad) Shell material: flame retardant aluminum alloy (UL94 V-0 grade)+internal shielding partition

Metal shell enhances heat dissipation and anti-interference ability, and shock-absorbing pad is suitable for high vibration scenarios

Security and Certification

Safety certification: IEC 61508 SIL 3 (Safety Integrity Level), EN ISO 13849-1 PL e Electromagnetic Compatibility (EMC): Compliant with IEC 61000-6-2 (Immunity, Level 4), IEC 61000-6-4 (Emission Limits, Level B) Environmental certification: RoHS 2.0 (Lead free, Halogen free), REACH compliance

Satisfy high security level control scenarios and can be used for personnel safety association and explosion-proof areas (requiring explosion-proof enclosures)

3、 Performance characteristics

Ultra high precision and real-time control capability: 24 axis linkage control supports spatial surface interpolation, with a position control accuracy of ± 0.0005mm, suitable for precision machining scenarios such as aviation components and semiconductor chips; EtherCAT/Profinet IRT real-time communication delay ≤ 10 μ s, ensuring multi device synchronization error<0.01mm, meeting high-precision collaborative requirements such as robot welding and laser cutting.

Powerful computing and algorithm support: The 64 bit dual core CPU has a floating point computing capability of up to 2.5 GFLOPS, which can smoothly run complex algorithms such as adaptive PID and feedforward control, with a steady-state error of less than 0.01%; Supporting electronic cam and electronic gear functions, achieving precise control of nonlinear motion trajectories, and adapting to the complex process requirements of packaging machinery and printing equipment.

High reliability and redundancy design: Dual Gigabit Ethernet redundant communication, network disconnection switching time<1ms, ensuring uninterrupted transmission of control instructions; The power supply is equipped with 10kA surge protection, and the core circuit adopts ECC memory and dual backup design. The average time between failures (MTBF) is over 250000 hours, which meets the uninterrupted operation in continuous production scenarios.

Flexible expansion and compatibility with multiple devices: 16 channel 24 bit high-precision AI interfaces can be connected to precision sensors such as grating rulers and laser rangefinders, and 8-channel encoder interfaces support absolute value encoders and grating ruler signals, compatible with third-party servo drives such as Siemens and Panasonic; Reserved expansion bus interface, which can expand digital I/O to 512 channels through expansion modules, suitable for different scale control scenarios.

Intelligent diagnosis and convenient operation and maintenance: Supports ABB RobotStudio Advanced Edition and Control Builder Pro debugging software, which can simulate motion trajectories and optimize PID parameters online through a 3D simulation environment; Built in multi-dimensional diagnostic function, real-time monitoring of module temperature, power status, communication link, and axis motion accuracy. Fault information is prompted through LED indicator lights, software interface, and SMS alarm (communication module required), while generating fault logs and maintenance suggestions, greatly reducing fault investigation time.


Working principle

The workflow of ABB 3HAC5498-1 high-performance control module revolves around instruction reception, high-precision acquisition, complex computation, real-time output, and closed-loop optimization to construct a full chain high-precision control system, as follows:

Instruction reception and high-precision signal acquisition: The module receives control instructions (such as 3D machining trajectories and process parameters) issued by the upper computer (such as MES system, robot teaching pendant) through the EtherCAT/Profinet IRT interface; At the same time, precise position signals of grating rulers and laser sensors (with a resolution of 0.0001mm) are collected through a 24 bit AI interface. High frequency status signals such as emergency stop and limit are collected through a high-speed DI interface (response time ≤ 1 μ s). Real time position/speed feedback of servo motors is collected through an encoder interface. All data is isolated from interference by an internal shielding partition and stored in the ECC memory buffer area.

Complex operations and trajectory planning: A 64 bit dual core CPU synchronously processes collected data and control instructions. On one hand, it parses 3D trajectory instructions and generates target values for each axis motion based on equipment mechanical parameters such as transmission ratio and backlash. Linear instructions are then converted into nonlinear motion trajectories using electronic cam algorithms; On the other hand, by comparing the motor feedback signal with the target value, the deviation correction amount is calculated through an adaptive PID algorithm, and feedforward control is introduced to compensate for load changes (such as inertial deviation when the robot grabs heavy objects), ensuring control accuracy.

Real time control signal output: After processing, the control signal is amplified by the internal driving circuit and transmitted to the servo driver through the EtherCAT main station interface in microsecond level cycles, driving the motor to move according to the planned trajectory; The analog output signal (with an accuracy of ± 0.02%) drives the precise control valve to operate, controlling process parameters such as pressure and flow rate; Digital output PWM signal adjusts heating power to achieve precise temperature control (control accuracy ± 0.1 ℃); All output signals are equipped with hardware filtering to avoid signal distortion caused by electromagnetic interference.

Closed loop optimization and fault monitoring: The module compares the actual motion trajectory of the motor with the planned trajectory in real time through the encoder interface and grating ruler signal. When the deviation exceeds the threshold, the trajectory correction algorithm is automatically triggered, and the control parameters are dynamically adjusted to ensure motion accuracy; At the same time, the internal diagnostic circuit continuously monitors the status of the module: if motor overcurrent, communication interruption, or temperature overheating (>70 ℃) is detected, protection actions will be immediately triggered (such as emergency stop of motor, switching to backup communication link), and fault codes and maintenance suggestions will be generated. Multiple channel alarms will be sent to ensure system safety.


Precautions

Installation specifications:

It needs to be installed in a sealed explosion-proof control cabinet (such as for Zone 2 explosion-proof areas), and the metal shell should be reliably grounded (grounding resistance ≤ 2 Ω). The shielding partition should be connected to the grounding main line of the control cabinet to enhance anti-interference ability; When installing DIN rails, the module spacing should be reserved at least 30mm, and a forced cooling fan (wind speed ≥ 2m/s) should be installed to ensure that the surface temperature of the module does not exceed 70 ℃; The front-end connector needs to use metal sealed joints and apply waterproof sealant to ensure IP67 protection.

Before installation, it is necessary to confirm that the module power type (24VDC/48VDC) matches the power supply, and that the power circuit is equipped with 5A fuses and surge protectors (10kA/250V) to prevent module damage caused by abnormal power supply; The encoder and grating ruler signal cables need to use twisted pair shielded wires, with both ends of the shielding layer grounded (grounding resistance ≤ 2 Ω). When the cable length is ≤ 50m, a signal repeater needs to be installed to avoid signal attenuation affecting accuracy.

Wiring and debugging requirements:

The wiring of analog input channels should use differential connection method to avoid common mode interference caused by single ended grounding; 4-20mA signals require shielded twisted pair cables with an impedance of ≤ 50 Ω to prevent signal attenuation; When wiring PWM signals for digital output, high-temperature resistant wires (with a temperature resistance of ≥ 105 ℃) should be selected to avoid cable heating caused by high-frequency PWM signals.

The first debugging requires the completion of axis parameter configuration (such as motor model, transmission ratio, reverse clearance compensation value) through Control Builder Pro software, and precision calibration: the actual position of the motor is collected through a grating ruler, and the deviation is calculated by comparing the target position. The software automatically compensates for the reverse clearance and pitch error to ensure single axis positioning accuracy of ≤± 0.0005mm. Before multi axis linkage debugging, axis synchronization calibration is required to ensure synchronization error<0.01mm

Maintenance and Overhaul:

Regularly (every month) inspect the appearance of the module, with a focus on whether the connectors are loose, whether the metal casing is corroded, and whether the cooling fan is operating normally; Every 3 months, calibrate the analog input accuracy with specialized instruments (such as high-precision signal sources) to ensure that the acquisition error of the 24 bit AI interface is less than 0.02%; Perform comprehensive maintenance once a year, including cleaning internal dust, replacing cooling fans (if running for over 10000 hours), and testing power surge protection performance.

When replacing a module, ensure that the firmware version of the new module is fully compatible with the system, and back up all parameters and programs before replacement; After replacement, it is necessary to perform precision calibration and synchronous debugging again, and use a laser interferometer to detect the axis motion accuracy to ensure compliance with production requirements; It is prohibited to plug and unplug encoder and real-time communication interface cables with electricity. An anti-static wristband must be worn during operation to prevent static electricity from damaging the internal integrated circuit.

Special working condition precautions:

When used in high vibration scenarios such as heavy-duty machine tools and forging equipment, a 5mm thick silicone shock pad should be installed between the module and the DIN rail, and the encoder cable should be replaced with a highly flexible shielded wire (with a bending life of ≥ 10 million times) to avoid poor signal contact or cable breakage caused by vibration.

When used in high temperature environments (>60 ℃), industrial air conditioning should be configured for the control cabinet to control the temperature inside the cabinet below 70 ℃; When used in low-temperature environments (<-25 ℃), a preheating module needs to be installed. Preheat for 30 minutes before powering on, and then start the control program when the module temperature rises above -10 ℃ to avoid capacitor failure or decreased calculation accuracy caused by low temperature.

When used in explosion-proof areas (such as Zone 1 in chemical workshops), ATEX certified explosion-proof enclosure kits should be selected, and all wiring should be connected through explosion-proof sealed joints to ensure an overall explosion-proof rating of Ex d IIB T4 Ga; Prohibit forced operation when module faults have not been resolved to prevent control failure from causing safety accidents.

  • User name Member Level Quantity Specification Purchase Date
  • Satisfaction :
No evaluation information
  • Siemens 6AG1204-2BB10-4AA3 Ethernet Switch
  • Siemens 6ES7193-4JA00-0AA0 Terminal Module
  • Siemens ET200SP 6ES7193-6PA00-0AA0 server module
  • Siemens 6ES7231-0HC22-0XA0 Analog Input Expansion Module
  • Siemens 6ES7350-2AH01-0AE0 Counter Module
  • Siemens 6ES7421-7DH00-0AB0 Digital Input Module
  • Siemens 6AV2124-2DC01-0AX0 Comfort Panel
  • Siemens 6ES7193-4CA40-0AA0 ET 200S Electronic Module
  • STOBER POSIDRIVE ® How to install MDS 5000?
  • Siemens 7XV5653-0BA00 dual channel binary signal transmitter
  • Thinklogical Velocity KVM-34 series KVM fiber extender
  • Watlow MLS300 Series Controller
  • ​DHR NLS3000 NLC System (Navigation Control System)
  • Watlow Anafaze CLS200 Series Controller
  • CyberPower UT650EG / UT850EG User’s Manual
  • Thermal Solutions EVS series gas regulated boilers
  • Bosch Rexroth HM20 Hydraulic Pressure Sensor
  • ABB SPAU 341 C Voltage Regulator
  • Rockwell Automation 1585 Ethernet Media
  • Rockwell Automation SmartGuard 600 Controller
  • Rockwell Automation 1756 ControlLogix Communication Module
  • Rockwell Automation Stratix series Ethernet devices
  • A-B Ultra3000 and Ultra5000 with DeviceNet
  • ABB INNIS21 Network Interface Slave module
  • DEIF Undervoltage and overvoltage relay type RMV-112D
  • SAUTER AVM 234S valve actuator (with positioner)
  • REXRTOH INDRAMAT TVD 1.3 power module
  • Honeywell Expert Series-C I/O Module
  • GE PACSystems RX7i power module (IC698PSA100/350 series)
  • Yokogawa AFV40S/AFV40D Field Control Unit (FCU)
  • Schneider 31H2S207 FBM207/b/c Voltage Monitor/Contact Sense Input Modules
  • Emerson DeltaV™ S-series Traditional I/O
  • MKS Type T3B Butterfly Valve (with DeviceNet Interface)
  • Triconex 3624 Digital Output Module
  • ABB 3BSE031151R1 PM865K01 Processor Unit HI
  • GE V7768 VME Single Board Computer
  • HIMatrix F30 01 Safety-Related Controller
  • TOSHIBA Welker Bearing Linear Guides and Wedge Components
  • GE Multilin MIF series digital feeder relay
  • ABB MNSiS Motor Control Center MConnect Interface
  • Emerson PR6426 32mm Eddy Current Sensor
  • Schneider ELAU PacDrive C400/C400 A8 Controller
  • Yokogawa Motor YS1700 Programmable Indicator Controller
  • Honeywell Searchline Excel Infrared Open Circuit Gas Detector
  • Rockwell Automation ICS AADvance Controller
  • ABB Relion ® 615 series RED615 line differential protection and control device
  • DEIF PPU-3 Parallel and Protection Unit
  • Foxboro PBCO-D8-009 Terminal Board (TB)
  • ASEM HT2150/QT2150 Fanless Panel Control Computer (IPC)
  • ABB FOUNDATION ™ Fieldbus Link Device LD 810HSE Ex V1.0
  • ABB Panel 800 Version 6 PP885 Hardware and Installation
  • Konica Minolta CM-3700A-U Plus spectrophotometer
  • Schneider FBM233 Field Device System Integrator Module
  • MTL 8502-BI-DP Bus Interface Module (BIM)
  • ABB DO880 Ability ™ System 800xA ® hardware selector
  • GE VMIVME-2540 24 channel intelligent counter/controller
  • GE VMIVME-3115-010 32-Channel 12-bit Analog Output Board
  • GE Fanuc Automation VMIVME-4140 32-Channel 12-bit Analog Output Board
  • BENTLY 1900/65A General Purpose Equipment Monitor
  • REXROTH Digital axis control HNC100
  • GE Grid Solutions 369 Series
  • ZYGO ZMI 7702 laser head
  • ZYGO ZMI 501A shell
  • ABB PFEA111-65 Tension Electronic Equipment
  • Allen Bradley 1753 Series GuardPLC 1800 Controller
  • Allen Bradley 1747-DCM Direct Communication Module
  • Allen Bradley 1746-NI8 SLC 500 Analog Input Module
  • Allen Bradley 1734 series POINT I/O common terminal module and voltage terminal module
  • Allen Bradley 150 Series SMC Dialog Plus Controller
  • Allen Bradley 1494V series variable depth flange mounted isolation switch
  • AB Allen Bradley 1492 series terminal block
  • Allen Bradley 1485 Series DeviceNet Media System
  • Allen Bradley 1391-DES series digital AC servo drive
  • Allen Bradley 1336 PLUS II Adjustable Frequency Driver
  • Allen Bradley 1336 IMPACT AC Inverter
  • Allen Bradley 1326AB high-performance AC servo motor
  • Allen Bradley DeviceNet Communication Module (1203-GK5/1336-GM5)
  • Allen Bradley 1203-CN1 ControlNet Communication Module
  • Rockwell Automation PanelView Standard Series Terminal (Model 2711)
  • Siemens SIMATIC S7-300 Digital Output Module (6ES7322-1BH01-0AA0)
  • Siemens SIMATIC S7-300 Digital Input Module (6ES7321-1BH02-0AA0)
  • Rockwell Automation 836T Series Differential Pressure Controller
  • Schneider Modicon Quantum 140DRA84000 Discrete Output Module
  • Schneider Modicon Quantum 140CPS11420 power module
  • Schneider Modicon Quantum 140ACO02000 Analog Output Module
  • Schneider Modicon Quantum 140CPU65260 Unity Processor
  • SIEMENS 6GK1105-2AA10 SIMATIC NET series optical switching module (OSM ITP62)
  • Modicon Quantum 140XBP01000 racks backplanes
  • ABB NTST01 Time Sync Link TU Time Sync Link Terminal Unit
  • Siemens 6ES7954-8LC02-0AA0 SIMATIC Memory Card
  • Siemens 6ES7511-1AK02-0AB0 SIMATIC S7-1500 CPU 1511-1 PN Central Processing Unit
  • Allen Bradley 1769-L32E (CompactLogix L32E) Programmable Automation Controller
  • Allen-Bradley 2711P-RDT7C PanelView ™ Plus 6 700 Industrial Human Computer Interface
  • Siemens 6AV6642-0DA01-1AX1 SIMATIC OP177B Industrial Human Machine Interface (HMI)
  • Emerson PACSystems RX3i I/O Module
  • Moxa EDS-508A series network managed Ethernet switch
  • Moxa EDS-408A series industrial Ethernet switch
  • ABB TK821V020 (3BSC95020R1) battery cable
  • Sonnax 6R80L-6R100-ZIP Transmission Valve Body Repair Kit
  • Moxa EDS-308 series industrial Ethernet switch
  • ABB Symphony Plus S+Control BRC410 Controller
  • GE Qualitrol IC670ALG230 Analog Input Module
  • ABB DCS series thyristor power converter
  • Schneider Electric Foxboro ™ DCS FBM201/b/c/d analog input module
  • Eaton XV-440-10TVB-1-20 Human Machine Interface (HMI)
  • Bentley Baker Hughes 2300 Series Vibration Monitors
  • Allen-Bradley IMC ™ S Class Compact Motion Controllers (IMC-S/23x model)
  • Siemens 6AV7875-0BC20-1AC0 SIMATIC HMI
  • Siemens 6AV6645-0CB01-0AX0 SIMATIC MOBILE PANEL 277 Mobile Panel
  • Siemens 6DD1607-0AA2 module functional characteristics!
  • Installation Requirements for GE IC693MDL655 Discrete Input Module!
  • ABB AI820 3BSE008544R1 Analog Input Module
  • How to order Siemens 6EP1336-3BA10 power module?
  • ABB AO810 REP3BSE008522R1 Analog Output Module
  • Siemens SIMATIC S7-400 EXM 438-1 I/O Expansion Module (6DD1607-0CA1)
  • Bently Nevada 3300 XL 8mm Proximity Sensor System
  • What are the scenarios for using Moog Rugged Motion Controller?
  • GE Grid Solutions Hydran M2 (Mark III) Enhanced DGA monitoring for transformers
  • Fanuc A16B-3200-0110 CNC System Module
  • ABB PM866AK01 processor unit (3BSE076939R1)
  • ABB MControl Motor and Feedline Control Unit (1TGE120011R1000)
  • ABB DSDP 140B Counter Board (5716001-ACX)
  • ABB M10x Motor Control and Protection Unit (1TNA920500R0002)
  • Foxboro Evo ™ Standard 200 Series Baseplates(PSS 31H-2SBASPLT)
  • Foxboro I/A Series Compact 200 16 Slot Horizontal Substrate (31H2C480B4)
  • DeltaV ™ Flex Connect Solutions for Foxboro ™ I/A Series 100 I/O
  • Foxboro Evo ™ FBM218 module
  • Yokogawa OpreX ™ STARDOM FCN-RTU Remote Terminal Unit