Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Electricity security matters more than ever

来源: | 作者:佚名 | 发布时间 :2023-11-20 | 417 次浏览: | Share:

Electricity is essential for the prosperity of our societies

It would be very hard to imagine our modern societies without a secure supply of electricity. While it only accounts for a fifth of primary energy use today, it is indispensable for the 24/7 and increasingly digital economy. Recent difficulties caused by the Covid-19 pandemic remind us of the critical importance of electricity in all aspects of our lives, such as keeping medical equipment working in hospitals and IT systems available for teleworking and video conferencing. The impacts of an extended outage go far beyond the power system or the value of the lost energy purchase itself.

Electricity’s share of final energy consumption is set to grow. Having increased from 15% in 2000 to 20% today, it is set to grow to 24% by 2040 if countries stay on their present course as in the Stated Policies Scenario of the IEA World Energy Outlook Efficient electrification of a range of energy uses could make electricity our most significant energy source. If countries turn towards a diverse, cost-effective mix in line with the Paris Agreement, as in the IEA Sustainable Development Scenario, the role of electricity becomes even stronger, reaching 31% of final energy consumption by 2040. While the share of electricity in final consumption is less than half that of oil today, it overtakes oil by 2040 in the Sustainable Development Scenario.

The growing share of electricity in final energy demand itself does not fully capture its importance. Electricity has critical linkages with other parts of the energy sector, particularly the oil and gas industry, and underpins the basic activities of the residential, commercial and industrial sectors. As electricity drives increased shares of heating, cooling, transport and many digital sectors of communication, finance, healthcare and others, so the need for adequate electricity security measures escalates. 

The electricity system has to cope with a wide range of threats, old and new


Electricity security is often referred to using the term “security of supply” or the more literal phrase of “keeping the lights on”. The ultimate goal is to provide electricity to consumers reliably and at reasonable cost. Many threats exist to meeting this objective, ranging from equipment failure and fuel supply shortages, to operational planning failure, human error and deliberate attack. The IEA applies the following definition:

Electricity security is the electricity system’s capability to ensure uninterrupted availability of electricity by withstanding and recovering from disturbances and contingencies.

Electricity security brings together all actions taken – technical, economic and political – to maximise the degree of security in the context of the energy transition, cyber events and climate impacts, both short and long term.

The themes covered in this report are rarely addressed through the same lens. From a detailed technical perspective, issues such as market design, system stability, cybersecurity or physical resilience may be addressed as separate disciplines. For policy makers they cover similar questions, including how reliability is defined as a measurable objective, which organisations carry which responsibility, and how appropriate incentives are given to the sector to ensure adequacy with a diverse generation mix and adequate transmission and distribution networks.

These themes also become ever more relevant because of related underlying trends. Electricity is expected to take an increasing share of total final energy consumption in the coming decades as we couple electricity with heating, transport and other sectors as part of our drive to decarbonisation. Especially in emerging economies, an enormous rise in demand is foreseen due to population and economic growth. All this puts electricity security higher than ever on the energy policy agenda.

Types of interruption to electricity supply

As electricity is a regulated good and most often designated as critical infrastructure, governments are generally held accountable for the reliability of power supply. Although the electricity system has always been designed and regulated with reliability and cost-effectiveness in mind, the first step to properly addressing risk is to understand the type, size and depth of different power interruptions. While all of them can have potentially deep economic and safety consequences, proper risk management requires a clear view of the stakes. For this purpose, it is essential to understand the type, causes and magnitude of damage caused by different types of power sector events:

Cascading blackouts/black system events occur when an initial outage causes the system to collapse from an increasing series of line overloads. These events affect all customers on the network, except those with back-up generation, during a period from hours to days before full restoration. Social damage is significant as a black system event affects many essential services, such as payment systems, telecommunications and traffic lights. These events are mostly due to equipment failure and simultaneous contingencies, and are very rarely related to lack of installed generation capacity. The Hokkaido blackout in 2018, due to an earthquake, and the South Australian blackout in 2016, a mix of severe storms and flawed interconnection standards, are recent examples.

The potential indirect impacts of blackouts are also enormous and include: transport disruption (the unavailability of trains and charging stations for electric vehicles), food safety issues (risk to the cold chain), problems related to public order (crime and riots), and loss of economic activity. This can lead to health and safety problems as well as substantial financial losses. In extreme cases where power outages relate to extreme natural events, loss of electricity supply exacerbates other recovery challenges, making restoration of the power system one of the earliest priorities.

Load shedding is the deliberate disconnection of electrical power in one part or parts of a power system. It is a preventive measure taken by system operators to maintain system balance when supply is currently or expected to be short of the amount needed to serve load plus reserves, after exhausting other options like calling on demand response, emergency supplies and imports. These are short-duration events lasting from minutes to a few hours where small amounts of energy are rationed to segments of consumers (1% to 2% of the unserved energy during a cascading blackout), while allowing loads that provide essential services to continue to be served. They are, from a consumer point of view, indistinguishable from other interruptions on the distribution grid. The anticipated, controlled and limited use of this extreme measure should be seen as an instrument to maintain security of supply.

Most current reliability standards target a level of supply that would expect a small amount of acceptable load shedding as a way to balance security of supply and economic considerations. For example, the Alberta system operator in Canada has needed to apply this type of interruption in three events between 2006 and 2013, with a total duration of 5.9 hours and an amount of energy well below the regulatory (reliability) standard. Even if load shedding results only in small amounts of energy not being served, it completely cuts power supply to certain groups of customers, creating an array of inconveniences. To share the damage and minimise the inconvenience, the power cuts are often “rolled”, switching from one customer block to the next. In the near future, digitalisation should allow power systems to phase out this small but drastic and inefficient way of rationing energy. This would cut energy only to non-essential appliances or storage-enabled devices, and maintain it for other uses where interruption would create more inconvenience, such as lifts.

Long rationing periods of electricity occur when system operators and governments have to limit power supplies on a planned basis because of large deficits of electricity supply to meet demand. This is possibly the most harmful type of power sector event that a society can face. Some long-duration rationing events have meant rationing as much of 4% to 10% of annual electricity consumption, creating large social and macroeconomic impacts. They include the one in Brazil in 2001 due to drought and an unsuitable investment framework. The large supply shock in Japan following the Great East Japan Earthquake also belongs to this category, when the government responded with a nationwide electricity conservation campaign that forced industry to make massive electricity demand shifts.

Many emerging economies such as Iraq and South Africa see their economic and social welfare severely impacted by recurrent periods of electricity rationing that can last many months. Although developed economies have solved this type of event due to sound investment frameworks, it remains a challenge for many developing economies. Nonetheless, developed economies should not take for this dimension for granted; investment frameworks need to be updated and resilient to new trends.


  • ABB HIEE300927R0101 UBC717AE101 High Voltage Inverter Board
  • ABB UFC721AE101 3BHB002916R0101 PC Board
  • ABB 5SHY4045L0003 3BHB021400 3BHE019719R0101 GVC736BE101 Diode and grid drive circuits
  • ABB 3BHE019719R0101 GVC736BE101 IGCT Module
  • ABB REM620A_F NAMBBABA33E5BNN1XF Protective Relay
  • ABB PPD113B03-26-100110 3BHE023584R2634 Power Distribution Module
  • ABB MB810 Module Mounting locations
  • ABB 3BHL000986P7000 LXN1604-6 POWER SUPPLY
  • ABB VBX01BA I/O Control Module
  • ABB AI03 AI module, 8-CH, 2-3-4 Wire RTDs
  • ABB 1TGE120010R1300 Industrial Control Module
  • ABB 216BM61b HESG448267R1021 Advanced Process Control Module
  • ABB BDD110 HNLP205879R1 Digital I/O Module
  • ABB IEMPU02 Power Supply Module
  • ABB G3FE HENF452697R1 High performance control module
  • ABB G3FD HENF452692R1 High-Performance Industrial Control Module
  • ABB B5EC HENF105077R1 Electronic Motor Protection Relay
  • ABB G3EFa HENF450295R2 Industrial Automation Module
  • ABB B5EEd HENF105082R4 Electronic Motor Protection Relay
  • ABB O3EId HENF452777R3 Digital Output Module
  • ABB NWX511a-2/R HESG112548R12 Industrial Automation Module
  • ABB E3ES Power communication module
  • ABB O3EX HENF315845R2 Industrial Control Module
  • ABB O3EHa HENF315087R2 Digital Output Module
  • ABB E3ED High-Performance Industrial Controller
  • ABB O3EGb HENF315118R2 Digital Output Module
  • ABB O3ED Digital Input Module
  • ABB O3ES HENF445789R1 Digital Input Module
  • ABB G3ESa HENF318736R1 control module
  • ABB 8025-235 Industrial Control Module
  • ABB 216NG61A HESG441633R1 HESG216875/K main control board
  • ABB SCYC51020 58052582G programmable Logic Controller
  • ABB RED670 Line differential protection
  • ABB PP825A 3BSE042240R3 Touch Screen Panel
  • ABB SCYC51020 58052582/G pulse trigger board
  • ALSTOM COP232.2 VME A32/D32.029.232 446 Controller Unit
  • ABB AO2000 LS25 Laser analyzers
  • ABB LM80 Laser level transmitter
  • ABB PM803F 3BDH000530R1 Base Unit 16 MB
  • ABB SD822 3BSC610038R1 Power Supply Device
  • ABB PCD235B1101 3BHE032025R1101 Industrial Control Module
  • ABB AZ20/112112221112E/STD Control Module
  • ABB UAD142A01 3BHE012551R0001 Industrial Control Module
  • ABB 5SHY35L4503 3BHB004693R0001 3BHB004692R0002 5SXE01-0127 main control board
  • ABB FET3251C0P184C0H2 High-Performance Power Module
  • ABB CAI04 Ability ™ Symphony ® Plus Hardware Selector
  • ABB R474A11XE HAFAABAAABE1BCA1XE output hybrid module
  • ABB REF542PLUS 1VCR007346 Compact Digital Bay Control
  • ABB REF542PLUS 1VCF752000 Feeder Terminal Panel
  • ABB PPD113B03-26-100100 3BHE023584R2625 output hybrid module
  • ABB 3BHE022293R0101 PCD232A Communication Interface Unit
  • ABB CI857K01 3BSE018144R1 Module Controller
  • ABB 3ASC25H216A DATX132 Industrial Controller
  • ABB LWN2660-6 High-Voltage Industrial Controller
  • ABB 1MRK00008-KB Control Module
  • ABB SC540 3BSE006096R1 Submodule Carrier
  • ABB REF615C_C HCFFAEAGANB2BAN1XC feeder protection and measurement and control device
  • ABB S-073N 3BHB009884R0021 multi-function servo driver
  • ABB SK827005 SK827100-AS 480V 60HZ coil
  • GE 029.381208 module
  • ABB REF615E_E HBFHAEAGNCA1BNN1XE Module
  • ABB TP830 3BSE018114R1 Baseplate Module
  • ABB TK803V018 3BSC950130R1 Cable Assembly
  • ABB DSRF197 3BSE019297R1 Controller Module
  • ABB DSAO120A 3BSE018293R1 Advanced Analog Output Board
  • ABB DSDP170 57160001-ADF Pulse Counting Module
  • ABB DSBC176 3BSE019216R1 Bus Extender Board
  • ABB DSDO115A 3BSE018298R1 Digital Output Module
  • ABB PM865K01 3BSE031151R1 Processor Unit HI
  • ABB 5SHY3545L0016 3BHB020720R0002 3BHE019719R0101 GVC736BE101 auxiliary DC power supply unit
  • ABB TP853 3BSE018126R1 Power Supply Module
  • ABB REM545AG228AAAA High Precision Control Module
  • ABB CI626A 3BSE005029R1 Communication Interface Module
  • ABB REM615C_D HCMJAEADAND2BNN1CD Motor protection and control
  • ABB TP857 3BSE030192R1 DCS System
  • ABB PP865A 3BSE042236R2 Touch Panel
  • ABB SCYC51020 58052582H Industrial Automation Control Module
  • ABB SCYC51090 58053899E Control Module
  • ABB CB801 3BSE042245R1 Profibus DP Slave Expansion Module
  • ABB 5SHY4045L0001 3BHB018162R0001 IGCT Module
  • ABB 5SHY6545L0001 AC10272001R0101 5SXE10-0181 High-Power IGCT Module
  • ABB RMU811 Module Termination Unit
  • ABB TVOC-2-240 1SFA664001R1001 Industrial Control Module
  • ABB LDSTA-01 63940143B Input/Output (I/O) Module
  • ABB GJR5252300R3101 07AC91H Analog Input/Output Module
  • ABB GJR5252300R3101 07AC91F Industrial Control Module
  • ABB TB711F 3BDH000365R0001 Industrial Control Module
  • ABB TU715F 3BDH000378R0001 I/O Terminal Unit (ITU)
  • ABB DC732F 3BDH000375R0001 Industrial Controller
  • ABB TTH300 Head-mount temperature transmitter
  • ABB UNS3670A-Z V2 HIEE205011R0002 Industrial Automation Module
  • ABB RC527 3BSE008154R1 Redundant System Control Module
  • ABB 5SHY5055L0002 3BHE019719R0101 GVC736BE101 Industrial Control Module
  • ABB PM866 3BSE050200R1 AC800M series PLC core controller
  • ABB UFC718AE01 HIEE300936R0001 Main Circuit Interface Board
  • ABB DSAI130A 3BSE018292R1 Industrial I/O Module Controller
  • ABB 07KT98 GJR5253100R0278 Advanced Controller Module
  • ABB PFTL101B-5.0kN 3BSE004191R1 Power Conversion Module
  • ABB 5SHX1445H0002 3BHL000387P0101 IGCT Module
  • ABB 3HNM07686-1 3HNM07485-1/07 Controller Module
  • ABB DSCS131 57310001-LM DS Communication Board
  • ABB DSBC172 57310001-KD BUS REPEATER
  • ABB DSRF180A 57310255-AV Digital Remote I/O Module
  • ABB DSTC175 57310001-KN Precision Control Module
  • ABB DSSB140 48980001-P Battery Unit Industrial Control Module
  • ABB UAC389AE02 HIEE300888R0002 PCB Board
  • ABB PFTL101B 20KN 3BSE004203R1 DCS Module
  • ABB UFC718AE101 HIEE300936R0101 PCB Circuit Board
  • ABB UNS2880b-P,V2 3BHE014967R0002 Control Board
  • ABB UNS0887A-P 3BHE008128R0001 Communication Module
  • ABB UNS2882A-P,V1 3BHE003855R0001 EGC Board
  • ABB UNS2882A 3BHE003855R0001 Interface Board
  • ABB UNS4881b,V4 3BHE009949R0004 Controller
  • ABB 216EA62 1MRB150083R1/F 1MRB178066R1/F 216EA62 Redundant system modules
  • ABB 216DB61 HESG324063R100/J Controller Module
  • ABB PFSK142 3BSE006505R1 Control board
  • ABB DSAI133A 3BSE018290R1 Analog Input Module
  • ABB PFTL201C-10KN 3BSE007913R0010 Load Cells
  • ABB CI858-1 3BSE018137R1 Industrial Module
  • ABB 5SHY35L4520 5SXE10-0181 AC10272001R0101 Controller
  • ABB TU847 3BSE022462R1 Module Termination Unit
  • ABB 6231BP10910 PLC Analog Output Module
  • ABB 07BR61R1 GJV3074376R1 Distributed I / O Coupler
  • ABB DI93A HESG440355R3 Digital Input Module
  • ABB IC660BBA104 6231BP10910 Industrial Control Module
  • ABB TP858 3BSE018138R1 Module Controller
  • ABB PFEA111-65 3BSE050090R65 Tension Electronics Module
  • ABB DSMB-02C 3AFE64666606 Power Supply Board