Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Global Energy Transitions Stocktake

来源: | 作者:佚名 | 发布时间 :2023-11-18 | 529 次浏览: | Share:

The latest IEA analysis tracking the global energy transition, covering technology, investment and people-centred progress toward the Paris Agreement

This year marks the finalisation of the first qlobal stocktake of the Pairs Agreement ,which assesses the world’s collective progress against its climate goals. In support of that important effort, the IEA is bringing together all of its latest data and analysis on clean energy transitions in one place, making it freely accessible to citizens, governments, and industry.

Reaching net zero emissions requires a complete transformation of how we power our daily lives and the global economy. The IEA's Net Zero 2050 Scenario lays out a narrow but achievable pathway to net zero emissions in the energy sector by mid-century – a trajectory consistent with limiting global temperature rise to 1.5oC. Following this pathway represents the world’s best chance of avoiding the worst effects ofclimate change , and requires accelerating the shift to non-emitting sources of energy, such as wind and solar; increasing energy efficiency; electrifying transport, industry and buildings; expanding the use of clean hydrogen and other low-emission fuels; and investing in emissions abating technologies, including negative emission technologies.

The IEA’s Global Energy Transitions Stocktake pulls together the latest data and analysis on the global clean energy transition, including energy sector greenhouse gas emissions, technology developments, energy sector financing, energy access and energy employment. Taken together, these indicators allow us to track global progress of the energy transition and provide an accurate and objective picture of where we are now, and the trajectories we are on.

This page, which will be regularly updated in the lead up to the UN's COP28 climate change conference, includes a calendar of all major report launches throughout the year, making it easy to follow the latest updates and find links to IEA’s publications and in-depth analysis. This series culminates in the release of a new Special Report on Climate which will explore viable pathways in the energy sector to 1.5oC.

In a complex global energy market he emergence of a new clean energy economy provides hope for the way forward

Today, the global average surface temperature is already around 1.2 °C above pre‑industrial levels, prompting heatwaves and other extreme weather events, and greenhouse gas emissions have not yet peaked. The energy sector is also the primary cause of the polluted air that more than 90% of the world’s population is forced to breathe, linked to more than 6 million premature deaths a year. Positive trends on improving access to electricity and clean cooking have slowed or even reversed in some countries.

Much additional progress is still required to meet the objectives of the Net Zero Emissions by 2050 (NZE) Scenario which limits global warming to 1.5 °C. Alongside our main scenarios, we explore some key uncertainties that could affect future trends, including structural changes in China’s economy and the pace of global deployment of solar PV.

Current NDCs commit to an 8% decline in CO2 emissions by 2030 in the energy sector

Current Nationally Determined Contributions (NDCs) imply that energy sector CO2 emissions will peak this decade and fall to 30 Gt CO2 in 2030, 5 Gt less than in the first round of NDCs pledged in 2015. Although recent growth in clean energy is set to approach the levels in existing NDCs at the global level, most NDCs still are not aligned with countries' long-term net zero targets.

The IEA Climate Pledges Explorer analyses NDCs from more than 190 countries to estimate energy sector CO2 emissions implied by their targets. The database also provides a complete repository of governments’ net zero pledges, including their legal status and target year.

The path to 1.5 ̊ C has narrowed, but clean energy growth is keeping it open

The case for transforming the global energy system in line with the 1.5 ̊C goal has never been stronger, with global CO2 emissions reaching a record 37 Gt in 2022. Already, solar PV installations and electric car sales are growing fast enough to meet the milestones from our 2021 Net Zero by 2050 report. Plus, innovation is providing new tools and lowering their cost.

But delivering net zero emissions will require larger, smarter and repurposed electricity networks; large quantities of low-emissions fuels; more nuclear power; and scaling up near zero emissions materials production. And, as part of an equitable pathway, almost all countries need to bring forward their targeted net zero dates.

By 2035, emissions need to decline by 80% in advanced economies and 60% in emerging market and developing economies compared with 2022 levels.

Momentum around low-emission hydrogen keeps growing, but progress is still hampered by cost challenges and uncertainty around demand

The number of announced projects for low-emission hydrogen production has grown rapidly in the past year, and could push annual production to 38 Mt in 2030 (from less than 1Mt in 2022). More than 40 countries have now enacted hydrogen strategies, further raising ambitions.  But scaling up production is now facing headwinds due to cost inflation and delays in the implementation of supporting policies.

Greater efforts are particularly needed to stimulate demand for low-emission hydrogen, which still accounts for less than 1% of global hydrogen production and use, and will need to grow more than 100-fold by 2030 to meet the IEA’s Net Zero Emissions by 2050 Scenario.  

Progress on electricity access has remained slow in 2023, hobbled by financial strains

The latest electricity access data confirms that for the first time in decades, the number of people without access to electricity in the world increased in 2022, rising to 760 million people. This setback was largely due to the combined impacts of the energy crisis and Covid-19 pandemic, and was concentrated in sub-Saharan Africa, home to 80% of those without access to electricity today.

Recent IEA data and analysis suggest that in 2023 progress on expanding has access has resumed but is still below pre-pandemic levels, with solar home systems playing a major role. This update comes in parallel with an update to all of IEA's latest data on Sustainable Development Goal 7: ensuring affordable, reliable, sustainable and modern energy to all.

Stronger international cooperation in high emissions sectors crucial to get on track for 1.5C climate goal

In the past year, only modest progress has been made in strengthening international collaboration in the areas where it is most needed. Progress has been made in expanding financial assistance to developing countries in some sectors, and in joint research and development initiatives. But much more progress is needed in aligning policies to create demand for clean technologies, and in establishing dialogue on trade in sectors where this is likely to be critical to the transition. In most sectors, participation in the leading initiatives for practical cooperation still falls short of a majority of the global market. The report argues that greater political commitment is needed to progress from softer forms of collaboration, such as sharing best practice, to harder forms such as alignment of standards and policies, which are more difficult but can yield greater gains in mobilising investment and accelerating deployment.

The clean energy economy is gaining ground, but greater efforts are needed

Rapid progress of key clean energy technologies shows the new energy economy is emerging faster than many think. The IEA’s Tracking Clean Energy Progress finds that solar PV, electric vehicles and lightning are fully on track in 2022 for their 2030 milestones laid out in the IEA’s Net Zero by 2050 Scenario. Progress can be observed across all of the 50-plus clean energy sectors and technologies evaluated, but accelerated policy support and investment are needed to quickly expand momentum across more countries and to all parts of the energy system to move the world closer to net zero emissions by 2050.

Clean energy investment in emerging markets and developing countries needs to grow steeply to reach SDGs and climate goals

Spending on clean energy in emerging market and developing economies outside of China has stagnated in recent years at around USD 250 billion per year. A seven-fold surge in clean energy investment is needed in these countries by 2035 to align with the Paris Agreement and sustainable development goals: less than 2% of the total would be enough to secure universal access to electricity & clean cooking fuels.

Governments have allocated USD 1.34 trillion to clean energy since the pandemic

Since the start of the Covid-19 crisis, governments have enacted USD 1 343 billion in clean energy investment support. This amount is unprecedented, but also heavily imbalanced as advanced economies account for nearly 95% of it.

In addition, policymakers have spent a further USD 900 billion in efforts to protect households and businesses from rising energy bills since autumn 2021. Only about 25% of these short-term affordability measures were targeted toward households most in need of support or businesses most exposed to the effects of high energy prices. Without better targeting, new affordability measures will further contribute to rising levels of government debt.

Clean energy investment reaches record high in 2022

The recovery from the Covid-19 pandemic and the response to the global energy crisis have provided a major boost to global clean energy investment, which rose to more than USD 1.7 trillion in 2022. For every USD 1 spent on fossil fuels, USD 1.7 is now spent on clean energy. Five years ago this ratio was 1:1. Clean energy investment is set to grow further in 2023, with growth driven largely by solar PV and EVs.

Renewable capacity additions grew by 13% in 2022

Renewable energy capacity additions rose by almost 13% to nearly 340 GW in 2022. However, solar PV was the only technology that broke a deployment record last year, with net additions of nearly 220 GW – a 35% increase from 2021. Annual wind capacity additions fell 21% from 2021 to 2022, declining for the second year in a row.

Global additions of hydropower grew, owing to several large projects in Asia, while bioenergy production for power generation also declined due to the phaseout of subsidies in China, the world’s largest market. For geothermal and CSP technologies, global annual market growth remained small but stable.

Public investment in energy-based research and development grew in 2022

Public RD&D spending reaches new high in 2022, led by China. Public RD&D expenditures play a significant role in fostering new clean energy technologies and bringing them to market. Globally, public spending on energy R&D rose by 10% in in 2022, to nearly USD 44 billion, with 80% devoted to clean energy topics. However, estimated growth in China masks sluggishness elsewhere, maintaining China’s status as the largest public spender on energy R&D. While OECD countries saw their total government spending on energy RD&D stagnate in 2022, new policies, notably the United States Inflation Reduction Act, promise increases in the coming years.

Clean energy supply chains expand substantially in 2022

Clean energy technology manufacturing is expanding rapidly, with new capacity additions posting strong year-on-year growth in 2022 for batteries (72%), solar PV (39%), electrolysers (26%) and heat pumps (13%). Wind manufacturing capacity grew much more modestly at around 2%. The announced pipeline of new manufacturing facilities is also growing. If all were to come to fruition, solar PV and battery manufacturing capacity could meet deployment levels needed in 2030 to meet the IEA’s Net Zero Emissions by 2050 scenario. Conversely, existing capacity plus announced projects for wind, electrolysers, and heat pumps remain insufficient. However, all clean energy supply chains remain highly geographically concentrated: with China alone accounting for 40-80% market share across these 5 technologies.

Global heat pump sales continue double-digit growth

CO2 Emissions in 2022: Growth in emissions lower than feared

Global energy-related CO2 emissions grew by 0.9% or 321 Mt in 2022, reaching a new high of over 36.8 Gt. Following two years of exceptional oscillations in energy use and emissions, caused in part by the Covid-19 pandemic, last year’s growth was much slower than 2021’s rebound of more than 6%. Emissions from energy combustion increased by 423 Mt, while emissions from industrial processes decreased by 102 Mt.

In a year marked by energy price shocks, rising inflation, and disruptions to traditional fuel trade flows, global growth in emissions was lower than feared, despite gas-to-coal switching in many countries. Increased deployment of clean energy technologies such as renewables, electric vehicles, and heat pumps helped prevent an additional 550 Mt in CO2 emissions.

Methane emissions remained stubbornly high in 2022

Methane is responsible for around 30% of the rise in global temperatures since the Industrial Revolution. Cutting methane emissions is one of the most effective near-term ways to limit global warming and improve air quality. Today, the energy sector accounts for around 40% of total methane emissions attributable to human activity, second only to agriculture. In 2022, the global energy industry released nearly 135 million tonnes of methane into the atmosphere, only slightly below the record highs seen in 2019. However, emissions from very large leaks detected by satellite fell by almost 10% in 2022 from what was detected in 2021, and preliminary estimates indicate that there was also a reduction in natural gas flaring.

CCUS set to expand rapidly if all planned projects come online

The IEA's Carbon Capture, Utilisation and Storage (CCUS) database tracks all CO2 capture, transport, storage, and utilisation projects that have been commissioned since the 1970s and includes projects under construction and planned. If all projects in the pipeline come to fruition, global CO2 capture capacity would reach over 300 million tonnes per year by 2030.

Half the emission reductions needed to reach net zero come from technologies not yet on the market

The IEA Clean Energy Technology Guide tracks progress on more than 500 individual technologies needed to achieve net-zero emissions in the energy sector. For each of these technologies, the Guide assesses their level of maturity, compiles a global list of development and deployment plans, and provides cost and performance indicators, including targets for future objectives. The Guide also features the Clean Energy Demonstrations Technology Database, which tracks and provides more information on large-scale demonstrators.

Clean energy employs over 50% of total energy workers

The energy sector employed over 65 million people in 2019, equivalent to around 2% of global employment. Energy sector employment recovered strongly after the Covid-19 pandemic, returning to pre-pandemic levels by 2021 thanks to resilient growth in clean energy and recently introduced incentives. Clean energy employs over 50% of total energy workers, owing to the substantial growth of new projects coming online—a trend seen across most global regions.


  • ABB NE810 3BSE080207R1 Network switch
  • ABB NE802; NE802 Network switch 3BSE080237R1
  • GE HYDRAN 201Ti Single Channel Gas Monitoring Transmitter
  • GE Hydran M2-X Transformer Online Monitoring Equipment
  • GE Hydran M2 Transformer Monitoring System
  • Kollmorgen Seidel 65WKS-CE310/6PB - Servo Drive Control
  • Kollmorgen U9M4T - Servodisc DC Motor, With Harmonic Drive Transmission
  • KOLLMORGEN TT-2952-1010-B - INLAND BRUSH SERVO MOTOR WITH TACH
  • ONE VF-RA2474N-5/10/12/15 - Servo Drive Power Cable
  • Kollmorgen S30601-NA - Servostar 346 + EtherCat
  • Kollmorgen HDIL100P1 - Direct Drive Linear Hall Effect Assembly
  • Kollmorgen TT-4239-1010-AA - DC Servo Motor 875 RPM
  • PMI Kollmorgen 00-00907-999 - ServoDisc DC Motor 0.5" Diameter Shaft
  • INLAND KOLLMORGEN TT-2952-1010-B - MOTOR (USES RESOLVER)
  • KOLLMORGEN CTI-187-2 - BRUSHLESS MOTOR DANAHER MOTION
  • Kollmorgen 12-0857 - Lead Screw Electric Cylinder without Motor
  • Kollmorgen AKM13C-ANCNR-00 - Servo Motor
  • kollmorgen 6sm, 10m - Cable
  • KOLLMORGEN ME2-207-C-94-250 - GOLDLINE SERVOMOTOR-ENCODER COMMUTATED
  • Kollmorgen MT308A1-R1C1 - GoldLine Motor
  • Kollmorgen 73 & 54 cm Travel - Ironless Linear Motors on THK Rail
  • Kollmorgen AKM53H-ACCNR-00 - Servo Motor
  • Kollmorgen PA5000 - Power Supply
  • KOLLMORGEN D082M-12-1310 - GOLDLINE DDR DIRECT DRIVE ROTARY MOTOR 230Vrms 300 RPM
  • Kollmorgen RBEH-01210-A14 - Brushless Motor, Heidenhain D-83301
  • KOLLMORGEN Servotronix PRD-CC18551H-11 - Servo Board
  • Kollmorgen DH083M-13-1310 - Ho Direct Drive Rotary. Max Speed: 400/500 RPM
  • KOLLMORGEN BMHR-4.8XX - INLAND MOTOR
  • Kollmorgen Seidel 84421 - Motor Cable 20 Metre 6SM 27/37 AKM DBL Engines
  • Kollmorgen AKD1207-NBCC-0000 - Drive
  • HP Indigo / Kollmorgen VLM32H-ALNR-00 - Motor
  • SUPERIOR ELECTRIC / KOLLMORGEN GM05009005 - POWERSTAT 50 AMP VARIAC w/ PMI MOTOR
  • Kollmorgen CM12A1-015-033-00 - MOTOR CABLE for AKD B/P/T/M Motor AKM 1-7 Cable
  • Kollmorgen U9M2 - DC Motor
  • Kollmorgen AKM11C-ANMN2-00 - 3-Phase PM Servo Motor 110W
  • Kollmorgen 60-023168-000 - MOTOR GEARBOX ASSEMBLY SERVODISC DC NO REAR SHAFT
  • Kollmorgen AS10300 - servo drive servo star Cincinnati
  • Kollmorgen AKM23D-EFC2C-00 - Servo Motor AKD Drive
  • KOLLMORGEN E33HRFB-LNK-NS-01 - STEPPER MOTOR 2.7AMP 251W 1500RPM 170V
  • Kollmorgen AKM21G-ENM2DB00 - Servomotor
  • KOLLMORGEN SERVO STAR 620-AS - 230-480V 20A Servo Drive
  • Kollmorgen CFE0A1-002-006-00 - Encoder Cable 6.00m
  • KOLLMORGEN AKM21C-ANM2DBOO - PM SERVOMOTOR
  • Kollmorgen 03200-2G205A - ServoStar Servo Drive
  • Kollmorgen CR10251 - SERVOSTAR CD AC Servo Driver
  • Kollmorgen VF-DA0474N-03-0 - 10 Ft Feedback Cable
  • KOLLMORGEN AKM21S-ANMNR-03 - Servo Motor
  • Danaher Motion Kollmorgen S403AM-SE - Servostar 443M-S Servo Drive
  • Kollmorgen Seidel digifas 7204 - Servo Amplifier Digital
  • Kollmorgen Industrial Drive B-406-B-A1-B3 - Goldline Brushless Servomotor
  • Danaher Motion S20630-CNS - Servo Kollmorgen S200 Series
  • KOLLMORGEN B-206-A-31-B3 - GOLDLINE BRUSHLESS PM SERVO MOTOR 1400RPM
  • Kollmorgen Seidel SR6-6SMx7 - 4m Cable
  • Cincinnati Milacron Kollmorgen Vickers PSR4/5-250-7500 - Power Supply
  • Kollmorgen AKM 13C-ANCNR-00 - Gripper Handling with Neugart PLE 40 gears
  • Kollmorgen SERVOSTAR 403 A-P - 3a servo drive
  • KOLLMORGEN S6M4H - INDEXER ASSY SERVO MOTOR
  • SERVOMOTOR KOLLMORGEN SEIDEL 6SM 57M-3.000-G-09 - Servo Motor
  • Kollmorgen VP-507BEAN-03 - Valueline AKD 10 Ft Power Cable
  • KOLLMORGEN 28454 - SERVO DRIVE, SERVOSTAR 300 SERVOSTAR 310
  • KOLLMORGEN TT-4205-4017-C - INDUSTRIAL DRIVE DC MOTOR
  • Kollmorgen T150551 - Servostar 343 Control Drive
  • Kollmorgen ICD05030A1C1 - Platinum DDL Direct Drive Linear Motor w/ 30" Rail Way
  • Kollmorgen SERVOSTAR 303 S30361-SE - Servo Drive
  • Kollmorgen 00-00907-002 - ServoDisc DC Motor Varian Semiconductor 3500054
  • Kollmorgen CM12A1-025-005-00 - MOTOR CABLE for AKD B/P/T/M Motor AKM 1-7 Cable
  • KOLLMORGEN MOTION TECH IL18100A3TRC1 - BRUSHLESS LINEAR MOTOR PLATINUM DDL
  • Kollmorgen SERVOSTAR 406 M-C - Servo Drive FW: 7.36
  • Kollmorgen IC11030A1P1103 - platinum direct drive linear motor
  • W&T 10/100BaseT - Com Server Highspeed 3×RS232/RS422/RS485
  • Kollmorgen S30361-NA - drive brand
  • Kollmorgen Industrial Drives PSR3-208/50-01-003 - Power Supply
  • Kollmorgen RBE-03011-A00 - Brushless Frameless Servo Motor, OD: 5-5/64"/129mm
  • Industrial Drives SBD2-20-1101-5301C2/160-20 - Servo Amplifier Board For Parts
  • Industrial Drives SBD2-20-1101-5301C2/160-20 - Servo Amplifier Board For Parts
  • Industrial Drives SBD2-20-1101-5301C2/160-20 - Servo Amplifier Board For Parts
  • Kollmorgen IC44030A2P1 - LINEAR DRIVE MOTOR
  • KOLLMORGEN AKM22E-ANS2R-02 - servo motor + Micron X-TRUE 60
  • Kollmorgen 18442-01B - Pendant (E2)
  • Kollmorgen AKD-P00306-NBEC-0069 - Drive
  • Kollmorgen AKM53H-ACCNR-00 - Servomoteur
  • Kollmorgen AKD-P01207-NACN-0056 - Servo Drive
  • Kollmorgen SERVOSTAR 403a-c - Servo Drive
  • Kollmorgen B-204-B-39-016 - Servo Motor
  • Giddings & Lewis Dahaner Motion Kollmorgen M.1017.3140 R3 - Output Module
  • Kollmorgen KNSG300 - Emergency Light Unit
  • KOLLMORGEN 62-0050 Model T31V-EM-C0 - Servo Motor Shaft Size 3/8" Dia 1-1/4" Long
  • Kollmorgen S30601-NA-ARM9 - SERVOSTAR346 Controller w/o Fan As Is
  • Kollmorgen PMI Motors 00-00903-010 - ServoDisc DC Motor Type U9M4H 1/2" shafts
  • Kollmorgen PMI Motion U12M4 - Servo Disc DC Motor Universal Instruments 11467000
  • Kollmorgen AKM53H-accnr-00 - Servo Motor
  • DANAGER MOTION / KOLLMORGEN ACD4805-W4 - (70A ) Vehicle / Motor Controller
  • Kollmorgen s60300 - SERVOSTAR 603 3 x 230-480v 2kva
  • KOLLMORGEN B-404-C-21 - GOLDLINE BRUSHLESS P.M. SERVOMOTOR
  • Kollmorgen T-5144-A - GE Aviation 739034-01 Direct Drive DC Torque Motor
  • KOLLMORGEN M.1302.8761 - CABLE, POWER
  • Kollmorgen CE03250 - Servostar Servo Drive
  • Kollmorgen K-342 - dual axis automatic autocollimator
  • Kollmorgen TT-4500-1010-B - Inland Motor
  • Kollmorgen S20260-Srs - Synqnets200 Series Servo Drive Forparts
  • Kollmorgen PRDRHP720SND-65 - drive CR06703-R
  • KOLLMORGEN S70362-NANANA - driver
  • Kollmorgen CR06260-000000 - SERVOSTAR CD AC Servo Driver
  • KollMorgen akd-m00306-mcec-D000 - Multi-Axis Master Programmable Drive AKD PDMM
  • KOLLMORGEN S61000 - SERVOSTAR 610 3X230-480V 10A
  • Kollmorgen AKD-P00306-NBCC-0000 - AKD Servo Drive
  • KOLLMORGEN CP306250 - SERVOSTAR SP Servo Drive
  • Kollmorgen MPK411 - controller
  • Kollmorgen S64001 - SERVOSTAR 640, factory-certified
  • Kollmorgen Servotronix Prdr0087006Z-00 - Lvd Servo Drive
  • Kollmorgen AKD-P00306-NAAN-0000 - Servo Drive Controller, 1.2KVA, 240Vac, 3 Phase
  • Kollmorgen MCSS08-3232-001 - MCSS06-3224-001 ServoStar Drives (AS-IS)
  • Kollmorgen CR06250-2D063A - drive
  • YASKAWA SGDP-04APA - SERVOPACK SERVO DRIVE
  • Kollmorgen s62001 - servostar 620-as 14kva 20a ip2o 3x 230-480v
  • Kollmorgen Seidel S60100 - Servostar 601 Servo Drive
  • KOLLMORGEN CR06703-R - HP SERVOSTAR CD CONTROLLER
  • kollmorgen Prdr0052200z-05 - graco inter Servo Component
  • KOLLMORGEN S403AM-SE - drive SERVOSTAR 443M-S
  • YASKAWA SGDP-01APA - SERVOPACK SERVO DRIVE
  • Kollmorgen CE06200-1H348H - SERVOSTAR CD Servo Driver
  • Kollmorgen S71262-NANANA - S700 Servo Amplifier 208Y/120V 480Y/277V
  • Kollmorgen S70302-NANANA-NA - S700 Servo Driver
  • KOLLMORGEN S61401-560 - ATS-SERVOSTAR 614-AS Servo Drive
  • KOLLMORGEN Industrial Drives BDS4A-103J-0001/102A21P - Servo Controller
  • Kollmorgen S71202-NANANA-NA-024 - S700 Servo Driver
  • KOLLMORGEN S70302-NANANA - driver
  • Kollmorgen CR06250 - SERVOSTAR Servo Drive