Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Progress of natural gas desulfurization technology

来源: | 作者:佚名 | 发布时间 :2024-01-02 | 529 次浏览: | Share:



1 Common natural gas desulfurization methods

From the perspective of the development trend of natural gas desulfurization technology, catalysis, adsorption and biological desulfurization are relatively advanced technologies, and according to the current domestic and foreign natural gas desulfurization methods, it can be roughly divided into chemical desulfurization, physical desulfurization, biological desulfurization and new desulfurization methods.

1.1 Chemical desulfurization method

Chemical desulphurization can be divided into wet desulphurization and dry desulphurization [1]. Dry desulphurization efficiency is high, desulfurizer generally can not be regenerated, suitable for low sulfur gas treatment, in the current industrial application is less. The absorption and regeneration methods of wet desulfurization solution can be divided into three types: chemical absorption method and REDOX method. Wet desulphurization has large processing capacity and continuous operation, and is suitable for occasions with large natural gas processing capacity and high hydrogen sulfide content.

1.1.1 Wet desulfurization technology

Wet desulfurization is through the gas-liquid two-phase contact, the H2S in the gas is transferred to the liquid phase, so as to obtain the gas purification, and then the desulfurization liquid is recycled and recycled. Among them, the commonly used wet desulphurization includes catalytic oxidation method and alkamine method [2], among which the most widely used in the world is the alkamine method.

1.1.1.1 PDS desulfurization

As a new liquid phase catalytic oxidation desulfurization process, PDS technology has the characteristics of simple process, low cost and high desulfurization efficiency compared with other similar technologies, and can not only remove inorganic sulfur, but also remove organic sulfur. High catalytic activity, less dosage, wide range of desulfurization application; It produces more sulfur foam, is easy to separate, does not clog equipment, and is suitable for desulfurization of various gases and low viscosity liquids.

The working principle of PDS desulphurization technology is similar to that of liquid phase catalytic oxidation, but there are essential differences. It is the same that the whole process is composed of two sub-processes of catalytic chemical absorption and catalytic oxidation of sulfide; The difference is that PDS desulfurization technology has catalytic effect on both sub-processes, and desulfurization is the control step of the whole process, that is, PDS desulfurization technology changes the control step of the whole process from the general liquid phase catalytic oxidation regeneration process to the control step of the whole process.

PDS desulfurization is carried out under alkaline conditions, and the desulfurization solution is composed of PDS, alkaline substance and cocatalyst. The alkaline substance used is ammonia or soda ash, but from the point of view of equipment corrosion and removal of organic sulfur, ammonia is better than soda ash. PDS desulfurization technology should be used under the conditions that the operating pressure is not too high, the maximum is not more than 3.0MPa, and the atmospheric pressure is the best, because the high power consumption caused by high pressure natural gas desulfurization treatment is not ideal. In recent years, the PDS desulfurization technology has been continuously improved and perfected, and the performance of various aspects of the catalyst has been greatly improved and improved, and the development of PTS-4, PTS-200 has been developed to the current PTS-400. The improved PDS-400 does not require pre-activation or cocatalyst for industrial use, and the activity index is increased from 0.02minI1 to 0.04min or even above 0.06min, and the catalytic activity and selectivity are improved.

1.1.1.2 Aldoamine method

The alkamine process is the most commonly used method in natural gas desulfurization. The alkylamine process is a process in which H2S and CO2 in natural gas are absorbed by desulfurizing solution such as methyldiethanolamine and diethanolamine, and then react with the alkylamine solution [3]. The common desulfurizers are monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), diethylene glycol amine (DGA), diisopropanolamine (DIPA), methyldiethanolamine (MDEA). The hydroxyl group and amino group are contained in the structure of alcoholamine, and the hydroxyl group can reduce the vapor pressure of the compound and increase the solubility of the compound in water. The amino group makes the aqueous solution of the compound alkaline in order to promote its absorption of the acidic components.

MEA is the most alkaline among various amines, reacts most quickly with acid gas, can remove both H2S and CO2, and has no selectivity for these two acidic substances. MEA is able to purify H2S and CO2 up to several ppm, but regeneration requires considerable heat. If the raw gas contains COS, MEA method is not suitable due to irreversible reaction and final degradation of solvent.

DEA can remove both H2S and CO2, and is non-selective. Unlike MEA, DEA can be used in situations where COS is present in the feed gas. Even though the molecular weight of DEA is higher, its application is still economical because it can adapt to more than twice the load of MEA. The residual acid gas concentration of DEA solution after regeneration is much lower than that of MEA solution.

In particular, MDEA has good chemical stability and the solvent is not easy to degrade. The corrosion of the device is light, which can reduce the investment and operating costs of the device; When absorbing H2S gas, the amount of solution circulation is small and the gas phase loss is small. However, MDEA has poor anti-pollution ability compared with other amines, which is easy to cause problems such as solution foaming and equipment clogging.

Amine absorption is a mature natural gas treatment method, but it has some problems, such as heavy equipment, high investment cost, complicated process, large amount of desulfurizer loss, regeneration and environmental pollution. One of the biggest problems is the regeneration of the absorbent. The main regeneration method used is high temperature and vacuum distillation, which has high energy consumption, large investment and low recovery rate. At present, the desulfurization and decarburization process of alcoholamine method has been developed from the use of a single aqueous solution to the formulation of a series of solvents with different solvents. Through the solvent compounding, the operation performance is improved and the application range is expanded, which has played an obvious effect of energy saving, reducing production costs, increasing the capacity of the device and so on.

1.1.2 Dry desulfurization

Dry desulfurization means that raw gas passes through a solid bed equipped with a solid desulfurizer at a certain airspeed, and H2S in the gas phase is adsorbed to the desulfurizer after gas-solid contact exchange, so as to achieve the purpose of purification [4].

More common solid adsorbents are iron series, zinc series, manganese series oxides more active oxides. Activated carbon is a common solid desulfurizer, which can be used to remove trace H2S from natural gas. Compared with other adsorbents (such as molecular sieve), activated carbon has the advantages of large specific surface area, good thermal stability, microporous structure and large adsorption capacity of moisture, etc., and its price is low, and it can also achieve the purpose of decolorization and odor absorption while desulfurizing. The above advantages of activated carbon make it very widely used. In addition, molecular sieve and zinc oxide and other substances can also be used for natural gas desulfurization.

The desulfurization effect of zinc oxide, molecular sieve, activated carbon and iron oxide desulfurizer can achieve the mass concentration of export sulfur less than 0.1mg/m, which can meet the requirements of natural gas desulfurization. Different desulfurization methods have advantages and disadvantages: molecular sieve and zinc oxide desulfurizer are expensive, and the equipment investment is correspondingly high (molecular sieve requires high temperature regeneration equipment); Activated carbon and iron oxide desulfurizer are cheap, less equipment investment cost, easy to operate, and more economical. However, from the perspective of chemical reaction mechanism, H2S removal by activated carbon requires the presence of O2, while H2S removal by iron oxide desulfurizer with or without O2 can be carried out (reaction 2).

2H2S+O2==2S+2H2O (1)

Fe2O3·H2O+3H2S==2FeS+S+4H2O (2)

1.2 Physical desulfurization method

1.2.1 Pressurized fluidized bed combustion (PFBC) technology

The British Coal Use Research Association (BCURA) first put a fluidized bed into a pressure vessel in 1968, which was the prototype of a pressurized fluidized bed. PFBC unit efficiency is 38% ~ 42%, desulfurization efficiency is more than 90%, but also has a strong denitrification capacity, so it has aroused great interest. A commercially operated PFBC power station was used for the first time at the Vartan power station in Switzerland.

1.2.2 Membrane separation technology

The principle of membrane separation is that in the epidermis of the film, there are many very fine capillary holes, which are formed by the space between the tissues of non-bonded materials in the membrane matrix. The flow of gas through these holes is mainly the result of the joint action of knuden flow (free molecular flow), surface flow, viscous flow and screening mechanism, in which viscous flow does not produce gas separation. According to the knuden flow mechanism, the penetration rate of a gas is inversely proportional to the square root of the molecular mass of the gas. Because the molecular mass of CH4 is smaller than that of H2S, CO2 and H2O, the permeability coefficient of CH4 is greater than that of H2S, CO2 and H20. Moreover, when it is knuden flow, the permeability coefficient of pure gas is independent of the operating pressure and remains constant. Surface flow refers to the flow of the gas layer adsorbed on the surface of the membrane hole through the membrane hole because the surface of the fiber membrane has a strong adsorption effect, and the characteristics of the adsorption layer, that is, the permeability of H2S, CO2 and H20 increases with the increase of pressure. Therefore, when the surface flow dominates, the permeability coefficient of H2S, CO2 and H20 is greater than that of CH4. According to the screening method, the molecular dynamic radius of CH4 is 1.92µm, which is larger than that of H2S, CO2 and H20. When the size of some membrane pores in the membrane epidermis is small enough, CH4 is difficult to pass through these membrane pores. Therefore, H2S, CO2 and H20 have higher separation factors than CH4. When the mixed gas passes through the membrane separator under pressure, the passage rate of different gases is greatly different. "High-speed gas" quickly passes through the membrane and separates from "low-speed gas". The two gases are discharged through different pressure tubes at different outlets of the treatment system. "High-speed gas" is also known as permeable gas, which is H2S, CO2, H20, H2, He and 02. It belongs to low pressure air flow; "Low-speed gas", also known as residual gas (tail gas), is CH4, N2, Ar, CO2 and other hydrocarbon gases, which belong to high pressure gas, and the product gas (tail gas) after treatment still has a high pressure into the pipe network.

The removal of H2S, CO2 and H20 from natural gas is based on the principle that the various gases pass through the membrane at different rates, so as to achieve the purpose of separation. The gas permeation process can be divided into three stages: (1) the gas molecules dissolve on the membrane surface; (2) The dissolved gas molecules are active diffusion and movement in the membrane; (3) The gas molecules desorption from the other side of the membrane. Gas separation is a concentration-driven process that is directly related to the pressure and composition of the feed and permeate gases.

In order to improve the separation efficiency of the membrane, the membrane separation units used in the industry are mainly hollow fiber type and spiral coil type, which can be properly selected according to the specific treatment conditions. The unit area price of hollow fiber membrane is cheaper than that of spiral coil membrane, but the permeability of the membrane is poor, so the required membrane area is larger. In addition, the hollow fiber tube bundle has a small diameter (usually less than 300 microns), which is used to transmit permeable gas. If the permeable gas flow is too large, the pressure in the tube will decrease significantly and affect the separation efficiency of the membrane. The spiral coil design solves this problem well, because it is to roll the membrane with a thinner selective permeation layer than the hollow fiber membrane into a tubular container, so it has a higher permeation flow rate, and the membrane's bearing capacity is also improved. At the same time, the unit can also be designed to the appropriate size according to special requirements for easy installation and operation. Therefore, although the unit area price of the spiral coil film is 3-5 times more expensive than that of the hollow fiber film, because of its above advantages, foreign natural gas membrane treatment devices mostly use spiral coil separation units.

Membrane separation technology is suitable for the treatment of natural gas with low raw gas flow and high acid gas concentration, and it is also suitable for the change of raw gas flow or acid gas concentration, but it cannot be used as a treatment method for obtaining high purity gas. It is not suitable for natural gas with large feedstock gas flow and low acid gas content, and the existence of too much water and acid gas at the same time will adversely affect the performance of the film. At present, foreign membrane separation technology mainly removes CO2 from natural gas, and the application of separating H2S is relatively few, and the concentration of H2S treated is generally low, and the treatment flow rate of most applications is not large, and some are only used for single gas Wells in remote areas. However, membrane separation technology, as a treatment process to remove a large amount of acid gas, or mixed with the traditional process, provides a feasible method for the treatment of natural gas with high concentration of acid gas. Many useful attempts have been made abroad in this regard. In particular, the treatment of some high H2S natural gas has obtained satisfactory results.

1.2.3 Pressure Swing Adsorption Technology (PSA)

Pressure swing adsorption technology is an important gas separation technology, which is characterized by reducing the partial pressure of adsorbed components to regenerate the adsorbent, and the rapid reduction of partial pressure is achieved by reducing the total pressure of the system or using purge gas. The technology was successfully developed in 1959 and is now widely used in industry due to its low energy consumption

1.3 Biological desulfurization method

Biological desulfurization technology is a new process developed in the 1980s, it has many advantages, no catalyst and oxidant, no chemical sludge treatment, less pollution, low energy consumption, high efficiency, many domestic and foreign scholars are committed to the research of this technology. It uses various microorganisms in the fermentation solution (such as thiobacillus denitriformis, thiobacillus thiooxides, thiobacillus ferrooxidans, thiobacillus thiobacillus thiodisulfide, thiobacillus filamentus and thiobacillus) to oxidize H2S to elemental S and H2SO4 under the condition of low oxygen, and the reaction formula is as follows 

2H2S+O2=2S+2H2O

2S+302+2H2O=2H2SO4

So far, there are two kinds of natural gas biological desulfurization processes that have obtained industrial applications: Bio-SR and Shell-Paques processes.

1.3.1 Thiobacillus ferrooxidans (i.e. Bio-SR process)

Bio-SR process was developed by the Japanese steel pipe company Keihama Production, industrial application in 1984, mainly used for industrial waste gas (such as refinery amine washing unit and Claus unit exhaust gas) sulfur removal, the use of thiobacilus ferrooxidans, operating under acidic conditions, has built two sets of units.

Thiobacillus ferrooxidans have eosinophilus, so the reaction should be carried out under acidic conditions, and the oxidation pH value is 12 ~ 14. The process utilizes the indirect oxidation of thiobacillus ferrooxidans to remove H2S with iron sulfate, and then oxidizes low iron to trivalent iron with thiobacillus ferrooxidans. Its desulfurization principle is as follows:

1.3.2 Thiobacillus azotizans (SHel-PaQUES process)

The process, developed jointly by Dutch company Paqu and Shell, uses thiobacillus denitriformis to remove hydrogen sulfide under alkaline conditions. The company's original Thiopaq process is used for desulfurization of refinery gas, biogas, etc. Shelpaq is the name given to natural gas, syngas, and Klaus exhaust treatment applications, where the process has been successfully used since 1993 for the desulfurization of biogas (a mixture of CH4, C02, and H2S). After the experiment of long-term treatment of high-pressure natural gas in the experimental plant, it is proved that the process runs smoothly, and its cost is about 100 US dollars /t of sulfur, which is suitable for treating 5013000kg/d of H2S. The technique uses lye to absorb hydrogen sulfide, since thiobacillus azotica can survive in both aerobic and anaerobic conditions, under aerobic conditions.


  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module
  • GE IS410STCIS2A IS400STCIS2AFF Industrial Control Module
  • GE DS200DCFBG2BNC DS200DCFBG1BNC DC Feedback Board
  • GE VME5565 VMIVME-5565-11000 332-015565-110000 P Reflective Memory
  • GE VMIVME-7807 VMIVMME-01787-414001 350-00010078007-414001 D module
  • GE IS220PDOAH1A 336A4940CSP2 Discrete Output Module
  • GE VMIVME-4150 Analog Output Module
  • GE WESDAC D20 PS Industrial Power Module
  • GE 369B1860G0031 servo drive module
  • GE 369B1859G0021 Input/Output Module
  • GE 208D9845P0008 Motor Management Relay
  • GE IS420UCSCH1A-F.V0.1-A Independent Turbine Controller
  • GE D20EME10BASE-T 820-0474 Ethernet Interface Module
  • GE DS200DCFBG2BNC MRP445970 DC Feedback Board
  • GE IC800SSI228RD2-EE servo motor controller
  • GE IS200JPDMG1ACC S1AT005 Digital Input/Output (I/O) Module
  • GE IS200TSVCH1AED servo input/output terminal board
  • GE IS200TTURH1CCC S1DF00Z Terminal Turbine Plate
  • GE IS200TSVCH1ADC S1CX01H servo input-output board
  • GE IS200TRPGH1BDD S1C5029 Trip Solenoid Valve Control Board
  • GE IS220YAICS1A L Analog Input/Output Module
  • GE UCSC H1 IS420UCSCH1A-F-VO.1-A Controller Module
  • GE UCSC H1 IS420UCSCH1A-B Communication Processing Module
  • GE IC697VDD100 Digital Input Module
  • GE V7768-320000 3509301007768-320000A0 Controller Module
  • GE IS410TRLYS1B Relay Output Module
  • GE IS415UCVGH1A V7666-111000 VME Control Card
  • GE IC800SSI216RD2-CE servo motor controller
  • GE VMIVME-5565-010000 332-01565-010000P Reflective Memory
  • GE IC695ALG508-AA Analog Input Module
  • GE IC660EPM100J Power Monitoring and Control Module
  • GE RS-FS-9001 362A1052P004 Redundant Fan System Module
  • GE IS220UCSAH1AK independent processor module
  • GE 369-HI-0-M-0-0-0-E Motor Management Relay
  • GE CIFX50-C0 interface board
  • GE SR469-P5-H-A20-T Motor Management Relay
  • GE WES5120 2340-21005 power module
  • GE WES5120 2340-21003 Control Module
  • GE D20MIC10BASE-T 820-0756 Ethernet Module
  • GE WES13-3 5167-001-0210 Mechanical Relay Output Module
  • GE WES13-3 2508-21001 Control Board Module
  • GE D20ME 526-2005-216943 Input/Output Module