Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Nuclear energy: Past, present and future

来源: | 作者:佚名 | 发布时间 :2024-01-03 | 246 次浏览: | Share:

1. The rise and stagnation of nuclear power

Nuclear energy began with the development of nuclear bombs for the military. Since then, the technology has been used for civilian power generation. Unfortunately, the growth of the anti-nuclear movement has damaged its reputation and growth trajectory.

Here is a brief history of nuclear power in the United States and the anti-nuclear movement that plagued its existence.

The first appearance of violence and its transition to civilian applications

The world's first application of nuclear fission was the two atomic bombs dropped on Japan during World War II. Needless to say, the word "nuclear" has some less than satisfactory associations. However, the "atoms for Peace" agenda of the 1950s meant that the powerful properties of fission would soon be put to civilian use. In 1958, the first commercial power plant went online in Pennsylvania, along with optimism that "energy is too cheap to measure" and even direct-to-consumer products like nuclear-powered cars!

The birth of anti-nuclear attitudes

In the mid-1950s, the U.S. military conducted hydrogen bomb tests in the South Pacific, spreading dangerous levels of radiation onto inhabited islands. The test also directly affected a Japanese fishing boat, whose crew suffered radiation poisoning while returning to Japan. Needless to say, it was a public relations disaster for the nuclear weapons test, and the Pentagon's botched cover-up further eroded trust.

Nuclear weapons were also a defining feature of the Cold War, with the Soviet Union and the United States building stockpiles of weapons of mass destruction that could destroy the world many times over. At the height of the Cold War in the early 1960s, anti-nuclear protests proliferated in response to concerns about nuclear testing and proliferation.

Environmentalists are anti-nuclear

At the same time, a grassroots environmental movement began to take shape in the 1960s. Rachel Carson's best-selling books "Silent Spring" and "The Population Bomb" have brought attention to pesticides and overpopulation. In the early 1970s, Earth Day, Greenpeace, and the United Nations Environment Program were founded.

More and more environmentalists are turning against nuclear power. Many point to opposition to the proposed Bodega Bay nuclear power plant as the birthplace of the anti-nuclear environmental movement. Local community groups and environmental groups have protested the plant with classic "not in my backyard" opposition, arguing that it destroys flora and fauna, local identity and the livelihoods of fishermen.

While the Sierra Club initially supported nuclear power, some vocal members switched sides, fearing that this powerful and abundant energy source could lead to runaway growth. David Brower, executive director of the Sierra Club, is deeply concerned about overpopulation and immigration: "More power plants create more industry, which in turn leads to greater population density... The scenic character of the state will be destroyed."

Eventually, the Sierra Club changed its stance, and to this day, it and other major environmental organizations maintain an anti-nuclear stance. For decades, they have worked to shut down nuclear plants, put a moratorium on new ones, and generally contributed to an unwarranted fear of nuclear power.

A "catastrophic" misunderstanding

The Three Mile Island disaster in 1979, Chernobyl in 1986 and Fukushima in 2011 dealt several major blows to the reputation of nuclear energy. The overreaction and media coverage of these events has led to a huge misunderstanding of these events and how damaging they actually are.

For example, the accident at Three Mile Island in 1979 killed a total of 0 people. The radiation released by the accident was negligible - by some estimates, the local dose was equivalent to what you'd get in a chest X-ray, and far less than the background radiation levels typically experienced in a year.

However, the dramatic evacuation response, the permanent shutdown of the reactors, and the lack of clarification or attempts to accurately report what actually happened meant that many Americans remained convinced that Three Mile Island was a real "disaster."

The Chernobyl accident of 1986 and the Fukushima accident of 2011 have also been misunderstood, especially in the case of Fukushima, which was greatly exaggerated. Chernobyl did not operate according to today's safety standards. The plant does not have a containment vessel that can prevent the release of radioactive material. Even more shocking was the cause of the accident: the operation team was conducting an "experiment" that involved turning off automatic safety mechanisms and simulating an emergency. They did it without training or planning. The initial steam explosion killed three people and 28 firefighters died of acute radiation syndrome (ARS). In the 25 years since the accident, 15 people have died of thyroid cancer.

The Fukushima Daiichi nuclear power plant suffered meltdowns in tsunami-induced flooding, but only 0-1 people died from the accident, with more damage and loss of life caused by an excessive evacuation response to the accident. The earthquake that triggered the tsunami that led to the meltdown of the Fukushima nuclear reactors was the largest ever recorded, killing more than 15,000 people and causing massive damage to Japan's built environment, including many industrial areas.

Despite these accidents, nuclear energy is very safe compared to other industries (more on that below).

2. Why use nuclear power?

Nuclear power is a powerful carbon-free energy source that:

Safer and cleaner than fossil fuels

More stable and reliable than renewable energy

Save space and resources

carbon-free

Nuclear power, along with solar, hydro, wind and geothermal - collectively referred to as "renewables" - produces no carbon emissions. At a time when the world is considering the current and future impacts of climate change and is committed to aggressive emission reduction targets, zero emissions is a powerful advantage.

All-weather availability

People are used to the light coming on at the flick of a switch, so power generation equipment needs to be ready to meet consumer demand no matter what time of day or weather. To meet this demand, the grid needs access to consistently reliable power, not dependent on whether the wind is blowing or the sun is shining.

The capacity factor of solar power, or the percentage of its generating time, is 17-28%. There are also significant variations in output, for example, at night when there is no sun, there is no output at all. Wind power generates about 32-47% of the electricity. Due to the intermittency of power generation, a grid made up of mostly renewable energy sources would not be able to provide the power supply required by the grid. Nuclear energy has a capacity factor of more than 90%, which makes it an excellent source of baseload power - providing electricity consistently and reliably.

Minimal, manageable waste

The biggest problem with nuclear waste is the widespread perception that it is dangerous. Unlike other energy industries, nuclear power deals with its waste (also known as spent fuel), keeps it under control, makes it safe, and doesn't affect the environment. Nuclear fuel and its waste are also small in volume. All the nuclear waste in the United States could fit into a football field and be piled less than 10 yards high.

In addition, the spent fuel can be recycled and used again as fuel for the reactor. Regulations stemming from the anti-nuclear weapons movement currently prevent the recycling of nuclear fuel in the United States, however, the fact that the Department of Energy is supporting demonstrations of new reactors using recycled fuel is a positive sign that we may be seeing things change.

Finally, spent fuel has a perfect safety record - it has never killed or injured anyone and is safely contained at the power plant site. For example, air pollution from the burning of fossil fuels causes 1 million premature deaths worldwide every year. Solar panels produce 300 times more toxic waste per unit of energy than nuclear power, and there are no requirements for storing this waste safely. As a result, solar panels began to end up in landfills at the risk of toxic chemicals leaching into groundwater.

reliable

The term "carbon-free" has another meaning: it requires no carbon resources at all. Many countries have virtually no carbon resources within their borders, so having energy sources that are not dependent on fossil fuel imports can make the country more energy secure. The more diverse a country's energy sources, the better. Germany, for example, is far more dependent on imported fossil fuels than France, and thus more exposed to the impact of the global energy crisis on the gas supply chain.

secure

Nuclear power is far safer than fossil fuels, especially coal, and rivals renewables in terms of deaths per megawatt of electricity generated. Particulate matter from coal shortens lives, and accidents caused by fossil fuels (such as gas pipeline explosions) kill far more people than nuclear (and wind and solar, which are also very safe). There have been no deaths from commercial nuclear power in the United States, and relatively few abroad, especially compared to other energy sources.

Save space and energy

Nuclear energy is produced on a very small footprint; A typical factory requires only about one square mile. In comparison, to produce the same amount of energy, wind requires 260-360 times more land and solar 45-75 times more land. With such a small footprint, nuclear power leaves more land for other uses, including environmental protection.

3. Challenges of nuclear energy

Nuclear power has a strong advantage in achieving the carbon-free and reliable energy sources we want. Why hasn't it become the obvious answer to building aggressively across the United States? Several major headwinds remain: overly burdensome regulation, lukewarm public perception, limited government support, and construction costs.

Too much onerous regulation

The nuclear Regulatory Commission (NRC), the regulator of the nuclear industry, is tasked with protecting public health and safety as well as the environment. The incentives inherent in this make it incredibly risk-averse, with little reason to consider cost-benefit trade-offs such as the health effects of nuclear versus coal, climate change, energy reliability, or energy security in decision-making. This in turn means that long timelines and onerous quality assurance requirements are not seen as a bad thing, but rather as something that may be seen as constructive from a narrow, safety-oriented perspective.

More specifically, the NRC is unduly slowing or increasing costs for the nuclear industry in several specific areas. First, the NRC requires regulated companies to pay 90 percent of the cost of their regulatory reviews. This incentivizes lengthy review processes and a lot of billable time, as the fees are used to pay for the commission's operations and salaries.

Another major challenge with the NRC regulatory framework is that they are based on a flawed radiation framework known as linear no Threshold (LNT). The framework greatly overstates the effects of low doses of radiation. The LNT guidelines require nuclear power plants to take extreme measures to reduce any possible chance of radioactive exposure, resulting in significant cost implications in design and construction standards. Nuclear power complexes subject to these standards require billions of taxpayer and utility customer dollars to meet these ridiculous "gold standard" regulations.

Finally, the NRC still lacks a regulatory framework for advanced reactors and small modular reactors (SMRs), making it difficult for companies to understand how they will be regulated in order to design reactors and prepare the corresponding application documents.

Public opinion is tepid

Public opinion on nuclear power is divided, with about half of Americans supporting it and half opposing it. The poll shows that Republicans and Republican-leaning independents are more likely than Democrats/Democratic-leaning people to say the federal government should encourage the production of nuclear energy (42 percent versus 32 percent). However, Democrats and climate advocates are slowly increasing their support for nuclear power and its place in the climate agenda, with a majority of Americans supporting a diversified energy strategy rather than calling for 100 percent renewable energy.

Fortunately, public figures are also beginning to change their attitudes toward nuclear power. Climate activist Greta Thunberg recently came out in support of nuclear power for the first time, saying it was "a mistake to shut down nuclear power stations to focus on coal". Energy Secretary Jennifer Granholm and nuclear influencer Isodope have also voiced calls for more nuclear power as the solution to our clean, stable electricity needs.

Some government support

Building and operating nuclear power plants has historically required high upfront costs and long payback periods, making it difficult to obtain financing for all but the largest and most well-capitalized companies or government entities. China's nuclear industry, for example, benefits from central planning and financial support from the national government. China has pledged to break ground on 150 new reactors over the next 15 years (it currently has 53), with 23 currently under construction.

Similarly, all of France's nuclear power plants (which provide 70% of the country's electricity) are owned and operated by EDF, a vertically integrated power company that is now fully owned by the French government. In a deregulated, free-market economy like the United States, the development of nuclear energy can become more difficult, especially because of the large upfront capital required to build a new plant.

U.S. support for the nuclear industry has historically been limited, especially when it comes to the construction and operation of nuclear plants (decommissioning, however, is subsidized). Renewable energy gets more support through tax credits and subsidies. Between 2011 and 2016, renewables received more than three times as much federal incentive help as oil, gas, coal and nuclear combined, and 27 times as much as nuclear.

However, the Inflation Reduction Act was a breakthrough in federal funding for the nuclear industry. For the first time ever, existing nuclear reactors are eligible for a production tax credit. However, in terms of the amount of subsidies received, the nuclear industry is still on an uneven playing field with renewable energy. The IRA sets aside $30 billion for nuclear power to provide 20 percent of U.S. electricity and $127 billion for wind and solar power to provide 12 percent of U.S. electricity.

High costs and delays

Building in the real world is hard, and getting worse at it. New York's Second Avenue subway and California's high-speed rail project are just two of many examples of billions of dollars spent with little to show for it. Nuclear power plants are no exception - they are large-scale, bespoke, complex engineering projects that must adhere to strict regulatory standards. Building reactors on time and on budget is the exception, not the norm, and we've lost the ability to build them.

Given the shrinking state of the nuclear industry and the historic lack of government support, it's not surprising that the United States has seen only two sets of new reactors break ground since 1985. Fast forward to today, and only Vogtle in Georgia is scheduled to be completed. Sadly, Vogtle doesn't paint the most flattering picture. The project cost about $30 billion, nearly double the original budget, and is more than six years behind schedule.

Economic viability has been one of the biggest obstacles to building new nuclear power plants. The next section details how to solve this problem.

picture

4. Vision fission

Between emissions targets to combat climate change and the growing demand for electricity in the United States and around the world, nuclear power is well positioned to establish itself as the smart long-term choice for solid, clean energy. And we must act now - the nuclear industry has been quiet for too long. How can we start building more nuclear power plants?

We need several steps to enable nuclear power to provide us with adequate, clean, and reliable energy: 1) regulatory reform; 2) More government support; 3) More public support; 4) Innovative nuclear companies (especially those working on small modular reactors).


  • ABB 3HAC5498-1 High-Performance Control Module
  • ABB 3HAC5518-1 Industrial Control Module
  • ABB 3HAC5497-1 Industrial Control Module
  • ABB 3HAC7344-1 Mains line filter unit
  • ABB 3HAC7681-1 Process Interface Module
  • ABB 3HAC6428-1/04 high-performance control module
  • ABB 3HAC6157-1 Floppy sign/supply cable
  • ABB 3HAC10847-1 Ethernet on front,Harness
  • ABB 3HAC5566-1 Industrial Communication Bus Cable
  • ABB 3HAC9710-1 Heat exchanger unit
  • ABB IMFECI2 Industrial Control Module
  • ABB IMDS014 Digital Slave Output Module
  • ABB INIT03 Control Module
  • ABB 3HAC031683-004 Cable Teach Pendant 30m
  • ABB HAC319AEV1 High-Performance Control Module
  • ABB UFC092BE01 Binary input module
  • ABB DAPC100 3ASC25H203 Industrial Control Board
  • ABB 57160001-KX DSDO 131 Digital Output Unit
  • ABB 3HAC4776-1/1 Industrial Control Module
  • ABB DSTF610 terminal
  • ABB YB560100-EA S3 Industrial Control Module
  • ABB XO16N1-B20 XO16N1-C3.0 High-Performance Industrial Control Module
  • ABB TU804-1 Programmable Logic Controller (PLC) Module
  • ABB TU515 I/O terminal unit
  • ABB TK516 Connection Cable with Contacts
  • ABB SPCJ4D34-AA Industrial Ethernet I/O System Module
  • ABB SPAD346C Integrated Differential Relay
  • ABB 1SAM101904R0003 SK-11 Signal contact 1NO+1NC
  • ABB SE96920414 YPK112A Communication Module
  • ABB SC610 3BSE001552R1 Submodule Carrier
  • ABB SC513 PLC Analog Input Module
  • ABB SAFT110 Advanced Safety Termination Module
  • ABB RVC6-5A Control Module
  • ABB RB520 Linear Motion Controller Module
  • ABB R1.SW2/3 Industrial Control Module
  • ABB PU517 Controller Automation System
  • ABB PS130/6-75-P Industrial Control Module
  • ABB 3BSE008062R1 PM633 Processor Module
  • ABB L110-24-1 Industrial Control Module
  • ABB IMDSO14 Digital Slave Output Module
  • ABB DSU10 Control Module
  • ABB DSQC627 3HAC020466-001 Advanced Power Supply Module
  • ABB DSQC354 Industrial I/O Module
  • ABB DSQC352 High Performance Input/Output Module
  • ABB 37911-4-0338125 Control Module
  • ABB DSPC172 CPU Module
  • ABB DSBB175 Industrial PLC Expansion Module
  • ABB CR-M4LS Industrial Control Module
  • ABB CI626A 3BSE005029R1 Communication Interface Module
  • ABB BB510 (DC5256) Digital Control Module
  • ABB 61615-0-1200000 High-Precision Industrial Controller
  • ABB 3HNE 00313-1 TILLV.0317 Machine No. 64-25653
  • ABB 3HNA000512-001 Control Module
  • ABB 3HAC025466-001 Industrial Control Module
  • ABB 3HAB8101-8/08Y Industrial Control Module
  • ABB 3BHB003689 Multifunction Controller Module
  • ABB PXBHE65 206-00212 power module
  • ZUNKU 6203-2RS Deep Groove Ball Bearing
  • ZUNKU 6201-2RS Deep Groove Ball Bearing
  • ZYCOM IGLACS01281 Control Module
  • Zygo 8010-0105-02 ZMI-501 Displacement Measurement Interferometer
  • Zygo 1115-801-346 laser head cable
  • ZYGO HSSDC2 TO HSSDC2 CABLE 1115-800-055
  • ZYGO HSSDC TO HSSDC2 CABLE 1115-800-056
  • ZYGO ZMI 4104C Measurement Electronics Board
  • ZYGO ZMI-2002 8020-0211 Measurement Board
  • ZYGO 7702 8070-0102-35 Laser Head
  • ZYGO ZMI 7702 8070-0102-01X Laser Head
  • ZYGO ZMI-4004 4-Axis VME64x Measurement Board
  • ZYGO PC200 CS1115-801-346 Laser interferometer cable
  • ZYGO 8010-0105-01 ZMI Power Supply
  • ZYGO ZMI-2002 8020-0211-1-J Laser system measurement board card
  • ABB 35AE92 control card
  • ABB 200900-004 I/O Adapter PLC Board
  • Siemens 6ES7193-4CA40-0AA0 ET 200S Electronic Module
  • Siemens 6AV2124-2DC01-0AX0 Comfort Panel
  • Siemens 6ES7421-7DH00-0AB0 Digital Input Module
  • Siemens 6ES7350-2AH01-0AE0 Counter Module
  • Siemens 6ES7231-0HC22-0XA0 Analog Input Expansion Module
  • Siemens ET200SP 6ES7193-6PA00-0AA0 server module
  • Siemens 6ES7193-4JA00-0AA0 Terminal Module
  • Siemens 6AG1204-2BB10-4AA3 Ethernet Switch
  • SIEMENS 6GK1105-2AA10 SIMATIC NET series optical switching module (OSM ITP62)
  • Schneider Modicon Quantum 140CPU65260 Unity Processor
  • Schneider Modicon Quantum 140ACO02000 Analog Output Module
  • Schneider Modicon Quantum 140CPS11420 power module
  • Allen-Bradley 1747-CP3 SLC ™ Series of programming cables
  • Kollmorgen S33GNNA-RNNM-00 - Brushless Servo Motor
  • Kollmorgen 6sm56-s3000-g-s3-1325 - Servo Motor
  • Kollmorgen AKM52K-CCCN2-00 - Servo Motor
  • Kollmorgen PSR3-230/75-21-202 - Power Supply
  • Kollmorgen akm24d-anc2r-00 - Servo Motor
  • Kollmorgen AKM22E-ANCNR-00 - Servo Motor
  • Kollmorgen S60300-550 - Servo Drive
  • Kollmorgen B-204-B-21 - Servomotor
  • Kollmorgen AKM21E-BNBN1-00 - Servo Motor
  • Kollmorgen TT2953-1010-B - DC Servo Motor
  • Kollmorgen pa8500 - Servo Power Supply
  • Kollmorgen BDS4A-210J-0001-207C2 - Servo Drive
  • Kollmorgen TTRB1-4234-3064-AA - DC Servo Motor
  • Kollmorgen MH-827-A-43 - Servo Motor
  • Kollmorgen AKM24D-ACBNR-OO - Servo Motor
  • Kollmorgen 00-01207-002 - Servo Disk DC Motor
  • Kollmorgen AKM21C-ANBNAB-00 - Servo Motor
  • Kollmorgen PSR3-208/50-01-003 - Power Supply
  • Kollmorgen 6SM56-S3000 - Servo Motor
  • Kollmorgen DBL3H00130-B3M-000-S40 - Servo Motor
  • Kollmorgen 6SN37L-4000 - Servo Motor
  • Kollmorgen AKM65K-ACCNR-00 - Servo motor
  • Kollmorgen 6SM56-L3000-G - Servo Motor
  • Kollmorgen AKMH43H-CCCNRE5K - Servo Motor
  • Kollmorgen PSR4/52858300 - Power Supply
  • Kollmorgen KBM-79H03-E03 - Direct Drive Rotary Motor
  • Kollmorgen AKM33E-ANCNDA00 - Servo Motor
  • Kollmorgen U9M4/9FA4T/M23 - ServoDisc DC Motor
  • Kollmorgen AKM13C-ANCNR-00 - Servo Motor
  • Kollmorgen AKM43L-ACD2CA00 - Servo Motor
  • Kollmorgen AKM54K-CCCN2-00 - Servo Motor
  • Kollmorgen M-605-B-B1-B3 - Servo Motor
  • Kollmorgen AKD-P00606-NBAN-0000 - Rotary Drive
  • Kollmorgen 6SM-37M-6.000 - Servo Motor
  • Kollmorgen A.F.031.5 - Sercos Interface Board
  • Kollmorgen 918974 5054 - Servo PWM
  • Kollmorgen U12M4 - ServoDisc DC Motor
  • Kollmorgen AKD-B00606-NBAN-0000 - Servo Drive
  • Kollmorgen MV65WKS-CE310/22PB - Servo Drive
  • Kollmorgen 65WKS-CE310/22PB - Servo Drive
  • Kollmorgen EM10-27 - Module