Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

The development of life science and biotechnology from the centennial Nobel Prize in Natural Science

来源: | 作者:佚名 | 发布时间 :2023-12-07 | 567 次浏览: | Share:

The second half of the 20th century was an era of rapid progress in the life sciences and biotechnology. On the one hand, the development of life science has profoundly changed human's understanding of the nature of life; On the other hand, the development and widespread application of biotechnology has also improved the quality of life of people like never before. It is worth noting that the establishment and development of biotechnology itself stems from major discoveries, theoretical innovations and technological inventions in basic disciplines such as physics and chemistry, and these historic and revolutionary achievements have basically won the Nobel Prize. Therefore, this paper attempts to sort out the context of the development of biotechnology according to the awarding of the Nobel Prize in Natural Sciences, and discusses the contribution of interdisciplinary integration of physics and chemistry to the development of biotechnology, so as to promote scientific researchers to think and explore the law and enlightenment of the development of biotechnology.

Introduction to the Nobel Prize in Physiology or Medicine

The Nobel Prize in Physiology or Medicine was established in the will of the late Swedish chemist Alfred Nobel. the goal is to recognize scientists who have made important discoveries in the field of physiology or medicine (Excerpt from the will of Alfred Nobel). For more than 100 years, the Nobel Prize in Physiology or Medicine has been recognized as the world's most impressive and benchmarking honor for its original, forward-looking and leading scientific research achievements, as well as the great impact and contribution of Nobel Prize scientific research achievements on human cognition, health and social and economic development.

Ii. Overview of the development of life sciences and biotechnology from the Nobel Prize in Physiology or Medicine

Biotechnology is a dynamic concept, and it is generally thought that science and technology that uses organisms themselves or systems of life processes to produce useful substances or services are called biotechnology (Robert Bud. Social studies of science.1991.21:415). With the continuous enrichment and development of life science theories, the connotation and definition of biotechnology are also expanding.

1. Embryonic stage (before 19th century)

Although it is widely believed that biotechnology is closely related to pharmaceutical research and development, looking back at history, we will find that the cultivation and livestock technology related to food is the earliest known human biotechnology. Around 12,000 BC, the Levant people of the eastern Mediterranean began to cultivate wheat, marking the beginning of agricultural biotechnology. Beginning in 6000 BC, humans began to use fermentation technology to obtain new foods, including brewing beer, making cheese and yogurt. In 1796, English doctor Edward Jenner prevented smallpox by vaccinating it, marking the birth of vaccine technology. In 1875, French scientist Louis Pasteur discovered that fermentation was caused by microorganisms and that yeast could convert sugar into alcohol, thus laying the foundation for industrial and medical microbiology.

2. Early stages of development (late 19th century to mid-20th century)

In 1897, German chemist Eduard Buchner further studied and found that the essence of fermentation is a catalytic reaction caused by enzymes in microorganisms. This research is considered to mark the birth of biochemistry (Nobel Prize in Chemistry, 1907).

In 1919, Hungarian agricultural engineer Karoly Ereky first used the term Biotechnology to describe the processing of material materials to produce products. In 1928, Scottish scientist Alexander Fleming discovered penicillin in the secretions of the microbe Penicillin. In 1938, Australian pathologist Howard Florey and British biochemist Ernst Chain demonstrated the efficacy of penicillin against bacterial infections in humans. In 1944, under the leadership of Florey and others, the industrial production of penicillin was achieved. Penicillin is the first antibiotic discovered in human history, and its discovery and application have epoch-making significance, saving countless lives, and its high efficiency and huge economic value make the antibiotic industry enduring (1945 Nobel Prize in Physiology or Medicine).

3. The Age of Molecular Biology (mid-20th century to present)

In 1953, James Watson and Francis Crick proposed the double helix structure of DNA, and the life sciences entered the era of "molecular biology" (1962 Nobel Prize in Physiology or Medicine). It provided the basis for deciphering the genetic code of organisms, leading to the emergence of genetic engineering, and became the most widely used biotechnology in the second half of the century. It is also the greatest achievement in the life sciences since the 20th century, a new era in the history of biology, and the development of life sciences, agricultural sciences and medicine.

In 1949, Australian immunologist Frank Macfarlane Burnet proposed the theory of acquired immune tolerance. Subsequently, British scientist Peter Medawar published an academic paper in 1953, which verified the theory of acquired immune tolerance through animal experiments. Both laid the theoretical foundation for modern transplant biology (1960 Nobel Prize in Physiology or Medicine). In 1954, American medical scientist Joseph E. Murray performed the first successful kidney transplant between identical twins, ushering in a new era of human organ transplantation to treat disease. In 1957, the American medical scientist E. Donnall Thomas published the first paper on human hematopoietic stem cell transplantation in the New England Journal of Medicine, thus opening the first hematopoietic stem cell transplantation for the treatment of leukemia. (1990 Nobel Prize in Physiology or Medicine)

  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module
  • GE IS410STCIS2A IS400STCIS2AFF Industrial Control Module
  • GE DS200DCFBG2BNC DS200DCFBG1BNC DC Feedback Board
  • GE VME5565 VMIVME-5565-11000 332-015565-110000 P Reflective Memory
  • GE VMIVME-7807 VMIVMME-01787-414001 350-00010078007-414001 D module
  • GE IS220PDOAH1A 336A4940CSP2 Discrete Output Module
  • GE VMIVME-4150 Analog Output Module
  • GE WESDAC D20 PS Industrial Power Module
  • GE 369B1860G0031 servo drive module
  • GE 369B1859G0021 Input/Output Module
  • GE 208D9845P0008 Motor Management Relay
  • GE IS420UCSCH1A-F.V0.1-A Independent Turbine Controller
  • GE D20EME10BASE-T 820-0474 Ethernet Interface Module
  • GE DS200DCFBG2BNC MRP445970 DC Feedback Board
  • GE IC800SSI228RD2-EE servo motor controller
  • GE IS200JPDMG1ACC S1AT005 Digital Input/Output (I/O) Module
  • GE IS200TSVCH1AED servo input/output terminal board
  • GE IS200TTURH1CCC S1DF00Z Terminal Turbine Plate
  • GE IS200TSVCH1ADC S1CX01H servo input-output board
  • GE IS200TRPGH1BDD S1C5029 Trip Solenoid Valve Control Board
  • GE IS220YAICS1A L Analog Input/Output Module
  • GE UCSC H1 IS420UCSCH1A-F-VO.1-A Controller Module
  • GE UCSC H1 IS420UCSCH1A-B Communication Processing Module
  • GE IC697VDD100 Digital Input Module
  • GE V7768-320000 3509301007768-320000A0 Controller Module
  • GE IS410TRLYS1B Relay Output Module
  • GE IS415UCVGH1A V7666-111000 VME Control Card
  • GE IC800SSI216RD2-CE servo motor controller
  • GE VMIVME-5565-010000 332-01565-010000P Reflective Memory
  • GE IC695ALG508-AA Analog Input Module
  • GE IC660EPM100J Power Monitoring and Control Module
  • GE RS-FS-9001 362A1052P004 Redundant Fan System Module
  • GE IS220UCSAH1AK independent processor module
  • GE 369-HI-0-M-0-0-0-E Motor Management Relay
  • GE CIFX50-C0 interface board
  • GE SR469-P5-H-A20-T Motor Management Relay
  • GE WES5120 2340-21005 power module
  • GE WES5120 2340-21003 Control Module
  • GE D20MIC10BASE-T 820-0756 Ethernet Module
  • GE WES13-3 5167-001-0210 Mechanical Relay Output Module
  • GE WES13-3 2508-21001 Control Board Module
  • GE D20ME 526-2005-216943 Input/Output Module