Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:
  • GE IS200ERAXH1A - EX REG AUX I/0 (ERAX CARD) (PCM Part)
    ❤ Add to collection
  • GE IS200ERAXH1A - EX REG AUX I/0 (ERAX CARD) (PCM Part)

    110V-380V
    5W-130W
    1A-30A
    1 year
    30
    United States, France, Japan, Viet Nam, Australia, Russia, Germany, Italy, Arabia
    IS200ERAXH1A - EX REG AUX I/0 (ERAX CARD) (PCM Part)
    • ¥11000.00
      ¥34670.00
      ¥11000.00
      ¥11000.00
    • Satisfaction:

      Sales: 0

      Review: 0

    Weight:3.600KG
    • Quantity:
    • (Inventory: 33)
Description
IS200ERAXH1A - EX REG AUX I/0 (ERAX CARD) (PCM Part)

GE IS200ERAXH1A - EX REG AUX I/0 (ERAX CARD) (PCM Part)

OVERVIEW

Product Description: The GE IS200ERAXH1A - EX REG AUX I/0 (ERAX CARD) is an input/output (I/O) card manufactured by General Electric (GE) and is part of the PCM (Power Conversion Module). It is mainly used as an auxiliary I/O interface for data interaction between external devices and the control system in a given control system. In complex industrial automation and control systems, it plays an important role in connecting external sensors and actuators to the core control unit.

Working Principle

Input Function Principle: On the input side, ERAX CARD has dedicated input channels for receiving external signals. These can be analogue signals from various industrial sensors (e.g. voltage signals from temperature sensors, current signals from pressure sensors) or digital signals (e.g. on-off signals from limit switches). In the case of analogue signals, they are converted to digital signals by internal analogue-to-digital (A/D) circuits so that they can be processed by the control system. The digital signals are then transmitted to the control system after appropriate level conversion and buffering.

Output function principle: On the output side, digital signals are sent to the ERAX CARD when commanded by the control system. for analogue outputs, the card's digital-to-analogue converter (D/A) circuitry converts the digital signals to analogue (e.g. to output voltage signals for controlling the opening of a valve or current signals for controlling the speed of a motor). For digital outputs, the signals are driven and amplified to meet the requirements of external digital devices (e.g., relays, indicators, etc.) for signal levels, currents, etc., and then the signals are output to the appropriate external devices.

Performance Characteristics

Multi-functional I/O interface: The card provides multiple types of I/O interfaces, which can flexibly handle different types of signals. It can receive and process analogue and digital signals at the same time, which makes it possible to connect a variety of industrial equipment, such as both sensors with analogue outputs such as temperature and pressure, and status detection sensors with switching outputs, as well as actuators that require analogue or digital input control, enhancing the versatility and compatibility of the system.

High-precision signal conversion: High precision in the conversion of analogue signals (A/D and D/A conversion). Accuracy is typically around ±0.1% - ±0.5% depending on the card configuration and application scenario. This high accuracy ensures accurate acquisition of signals from external devices and precise control of actuators, which is important in industrial processes (e.g., chemical, pharmaceutical, etc.) that require high control accuracy.

Signal processing capability and speed: With strong signal processing capability, it can quickly acquire, convert and transmit input signals, and at the same time output control signals in a timely manner. Higher data transfer rate to meet the requirements of industrial control systems for real-time, to ensure that the control system can quickly respond to changes in the state of external equipment, and timely output of effective control instructions.

Reliability and stability: It adopts industrial-grade electronic components, which enables it to operate stably in harsh industrial environments. It has the ability of anti-electromagnetic interference (EMI), which can effectively resist the influence of common sources of electromagnetic interference (such as large motors, welding machines, etc.) in industrial sites. At the same time, it may also have certain self-diagnosis and protection functions, such as over-current protection, over-voltage protection, etc., in order to prevent the card itself and the connected external equipment from being damaged.

Technical Parameters

Input parameters

Analogue Input Range: A variety of analogue signal ranges can be accepted, e.g. common voltage signal ranges may include 0 - 5V, 0 - 10V, current signal ranges may be 4 - 20mA, etc., depending on the specific application requirements and card configuration.

Digital Input Types: Supports a variety of digital signal level standards, such as TTL (Transistor - Transistor Logic) level, CMOS (Complementary Metal Oxide - Semiconductor) level, and is capable of handling different types of switching signals, such as sensor on/off signals, proximity switch signals, and so on.

Number of input channels and resolution (analogue inputs): a number of input channels, which may vary depending on the specific model, e.g. 4 - 8 input channels. The resolution of the analogue input channels may be 12 - 16 bit, the higher the resolution, the more accurate the acquisition of the analogue signal.

Output parameters

Analogue output range: The analogue output range corresponds to the input range, e.g. 0 - 5V or 4 - 20mA signals can be output for controlling the working status of external devices, e.g. opening of valves, rotating speed of motors etc.

Digital Output Characteristics: The digital outputs provide sufficient drive capability, and the output current can reach a certain value, e.g. tens of milliamps (mA), to ensure that external digital devices (e.g. relays, indicators, etc.) can be driven reliably. The signal levels of the outputs comply with industry standards, e.g. 3.3V - 5V (TTL levels) for high levels and close to 0V for low levels.

Number of output channels and update frequency (analogue output): there are a certain number of output channels, which may be the same as or different from the number of input channels, depending on the design. The analogue outputs have a high update frequency, capable of thousands of times per second, depending on the system setup and requirements, and the high update frequency helps to achieve precise dynamic control of external devices.

Communication parameters

Supported communication protocols: GE-specific communication protocols are supported for communicating with the control system, and may also be compatible with some industry-standard communication protocols (e.g. Modbus, etc.) to facilitate data interaction with other devices or systems.

Communication rate: In the internal system communication, the communication rate may reach about 10Mbps - 100Mbps, depending on the configuration of the system and the application scenario, to ensure the fast transmission of data between the card and the system.

Physical Parameters

Dimensions: The external dimensions are generally designed according to the standard card slot of the system, the length may be between 10 - 20cm, the width between 5 - 10cm, and the thickness between 1 - 3cm, which is easy to be inserted into the standard I/O slot of the system for installation.

Weight: Lightweight, typically between 50 - 200g, and not overly burdensome to the installation and structure of the system.

Environmental Parameters

Operating Temperature Range: Able to work in a wide range of temperatures, generally - 20 ℃ - + 60 ℃, can be adapted to different industrial field temperature conditions.

Humidity range: Relative humidity range is typically 10% - 90% (non-condensing), ensuring normal operation in different humidity environments.

Application Areas

Industrial automation field: In automated production lines, sensors and actuators used to connect various production equipment. For example, in the process of automobile manufacturing, it can receive the signal of the pressure sensor on the robot arm, and at the same time output the signal to control the robot's action; it can also collect the rotational speed signal of the conveyor belt motor, and output the signal to control the motor's start-stop and speed regulation, so as to realise the automation control and monitoring of the production line.

Process control system: In the chemical, pharmaceutical and other process control industries, it is used to collect and process the temperature, pressure, liquid level and other process parameters in the reactor, and output control signals to adjust the feed valve, heating or cooling device. For example, in the pharmaceutical production process, by receiving the temperature sensor signal inside the reaction kettle, according to the temperature changes in the output signal to control the heating or cooling system, to ensure that the drug production process in the appropriate temperature conditions.

Energy management system: In power systems, it can be used to collect operating parameters (such as temperature, pressure, etc.) of generators, transformers and other equipment, and output signals for equipment protection and control. For example, in a substation, it receives signals from transformer oil temperature sensors and outputs signals to activate cooling devices when the oil temperature is too high to ensure the safe operation of power equipment.

Installation and Maintenance

Installation requirements

Card slot installation: The ERAX CARD should be inserted correctly into the standard I/O card slot of the control system according to the system's installation manual. During the insertion process, make sure that the card has good contact with the card slot to avoid loose or poor contact that may cause signal transmission problems. After insertion, it may be necessary to secure the card by means of screws or clips to prevent the card from being ejected accidentally.

Wiring Connection: For wiring the input and output ports, use appropriate cables and connectors, and connect them according to the identification of the ports and the wiring diagram of the system. Connections should be made securely and care should be taken to avoid wiring errors, especially in the wiring of analogue and digital signals, which should be strictly differentiated. Also, ensure that the cable shielding (if any) is well grounded to minimise electromagnetic interference.

  • User name Member Level Quantity Specification Purchase Date
  • Satisfaction :
No evaluation information
  • Honeywell Fusion4 MSC-L Multi Stream Loading Controller
  • Honeywell IPC 620-06 Programmable Controller
  • Honeywell Enhanced Micro TDC 3000 Control System
  • Honeywell Expert LS I/O System
  • Honeywell Expert PKS Universal Process Cabinet
  • KEBA KeConnect I/O: Modular Industrial Automation I/O System
  • KEBA FM 299/A GA1060 fieldbus main module
  • KEBA KeControl C1 CP 03x: Highly Integrated Embedded Industrial Controller
  • KEBA KeControl series controllers
  • KEBA KeConnect C5: High density modular IO system empowering industrial automation
  • KEBA DI 260/A Digital Input Module
  • Kollmorgen SERVOSTAR 600 (S600) series digital servo drive
  • Kollmorgen S300 Servo Drive Application Guide
  • Kollmorgen H series brushless servo motor and Silverline driver
  • Kollmorgen Servo System Product Guide
  • KOLLMORGEN S200 High Performance Compact Brushless Servo Drive
  • KOLLMORGEN IDC EC Series Electric Cylinder Configuration and Application Guide
  • Selection and Application of KOLLMORGEN E/H Series Stepper Motor
  • Kollmorgen AKD/S700 series servo drive
  • KOLLMORGEN Digifas-7200 Digital Servo Amplifier Application Guide
  • Kollmorgen SERVOSTAR-CD servo drive hardware installation and system configuration
  • MOOG QAIO 16/4 Analog I/O Module Technology Analysis and Application Guide
  • MOOG G128-809A DIN rail power supply
  • MOOG MSD Multi Axis Servo Drive System (DC-AC)
  • MOOG DM2020 Multi axis Servo Drive
  • MOOG M3000 ® Control system and MSC servo controller
  • MOOG G123-825-001 DIN rail buffer amplifier
  • MOOG Servo Electronics Products
  • MOOG T161 Series Rack Mount Digital Brushless Motor Controller
  • Motorola PTX series (PTX700/760/780) portable walkie talkies
  • MOTOROLA MVME2400 series VME processor module
  • MOTOROLA CPCI-6020 CompactPCI Single Board Computer
  • Motorola MVME162 Embedded Controller
  • Reliance Electric Engineering Drive System and DBU Dynamic Braking Unit
  • RELIANCE ELECTRIC INVERTRON DBU Dynamic Braking Unit
  • Reliance 57C413B/57C423 common memory module
  • Rockwell Automation AutoMax™ Distributed Power System
  • Reliance Electric AutoMax Programming Executive V3.5
  • Deep Analysis and Industrial Control Application of Reliance DCS 5000 Enhanced BASIC Language
  • Rockwell Automation MD60 AC Drive
  • COTEK SD Series Pure Sine Wave Inverter
  • RELIANCE ELECTRICI GV3000/SE AC General Purpose (Volts/Hertz) and Vector Duty Drive Version 6.06
  • ABB SACO16D1 Alarm Display Application Guide
  • REXROTH Indramat PPC-R Modular Controller Application Guide
  • REXROTH EcoDrive Cs series AC servo drive system
  • REXROTH IndraControl VEP Embedded Terminal Project Planning and Operation Guide
  • REXROTH IndraDyn S MSK series synchronous servo motor
  • REXROTH 4WRPEH series Directional control valves
  • REXROTH WE 6X series directional valve
  • REXROTH VT-HNC100... 3X Series Digital Axis Controller
  • REXROTH BTV04.2 Micro Control Panel Functions and Applications
  • REXROTH MKD Explosion proof Synchronous Motor Application Guide
  • REXROTH 4WRTE type electro-hydraulic proportional directional valve
  • REXRTOH IndraControl VDP series operation display
  • REXRTOH MSK series synchronous servo motor
  • REXRTOH ECODRIVE DKC Series Drive Controller Comprehensive Fault Diagnosis and Maintenance Guide
  • REXRTOH IndraDrive HMV01 series power supply unit
  • REXRTOH SE 200 Electric Tool Controller Details
  • REXRTOH INDRAMAT RAC 2 Spindle Drive Controller Application Guide
  • REXRTOH CDH1/CGH1/CSH1 series milling machine type hydraulic cylinder
  • REXRTOH MDD Digital AC Servo Motor Application Guide
  • REXRTOH DIAX04 Second Generation Driver Controller Application Guide
  • REXRTOH EcoDrive 03 Drive Controller
  • REXRTOH IndraDrive Controller CS Series Technical Analysis and Application Guide
  • REXRTOH A4VG series 40 axial piston variable displacement pump application guide
  • REXRTOH DDS02.1/03.1 Digital AC Servo Drive
  • REXRTOH VT-HPC Digital Pump Control
  • REXRTOH HNC100-3X Electro hydraulic Motion Control
  • ABB Advant Controller 250 Modular Controller
  • ABB QABP Low Voltage High Efficiency Variable Frequency Motor Application Guide
  • ABB Conductivity Analyzer Application Guide
  • ABB S500 Distributed Remote I/O System
  • ABB AC500 PLC Module Wiring Guide
  • ABB REG216 Digital Generator Protection System
  • Siemens SIRIUS Domestic Control and Protection System
  • Analysis and Application of Siemens SMART LINE V5 HMI Technology
  • SIEMENS CP 5613 A2/CP 5614 A2 Communication Processor
  • SIEMENS SIMOVERT MASTERDRIVES Vector Control Series
  • Siemens 5SN series terminal power distribution products: safe, efficient, and compact electrical solutions
  • Siemens SENTRON 5SY6106-7 miniature circuit breaker
  • Technical Analysis and Application Guide for Siemens SIMATIC TI505/TI500 MODNIM Module
  • Comprehensive Analysis and Configuration Guide for Siemens ET200SP Distributed I/O System
  • Technical Analysis and Application Guide for Siemens EG Frame Molded Case Circuit Breaker NEB/HEB Series
  • Siemens SENTRON 5SY Series Terminal Distribution Products Full Analysis: Innovative Technologies and Application Solutions
  • SIEMENS SIPROTEC 4 System: A Comprehensive Solution for Power Protection and Automation
  • Integration and Application of Siemens SIMO-MM3 Driver Control Block in PCS7 System
  • SINAMICS A10: Intelligent Servo Drive System with Integrated Safety and Efficient Debugging
  • Siemens SITOP UPS 1600/UPS 1100: High reliability DC uninterruptible power supply system for industrial automation
  • Comprehensive Analysis and Selection Guide for Siemens SICAM 8 Substation Automation Platform
  • Siemens SENTRON intelligent circuit protection equipment: full analysis of communication, measurement, and digital management
  • Siemens MOBY I RFID System Configuration and Application Guide
  • SIEMENS S7-1413 Communication Software Architecture and Application Detailed Explanation
  • SIEMENS SINUMERIK System 800 General Interface Technology Explanation and Configuration Guide
  • Siemens SINUMERIK 840C CNC System Installation and Debugging Guide
  • SIEMENS SIMATIC S5-115U Programmable Controller Comprehensive Analysis and Professional Application Guide
  • SIEMENS SIMATIC RF120C Communication Module Comprehensive Analysis and Application Guide
  • Comprehensive analysis and detailed explanation of key technologies for SIEMENS SIMADYN D hardware system
  • Comprehensive Analysis of Siemens TP/OP 170 Series Touch Screen and Operation Panel
  • SIMATIC MODNIM Module Deep Analysis: A Reliable Bridge for Industrial Modbus Communication
  • Comprehensive Analysis and Application Guide for SIEMENS S7-PLCSIM Advanced Simulation Software
  • Technical Analysis and Professional Operation Guide for SIEMENS 1FK6 Servo Motor
  • SIEMENS S7-300 PLC Beginner's Practice: From Hardware Installation to Program Debugging
  • In depth analysis and selection guide for SIEMENS 3AH3 vacuum circuit breaker technology
  • TEKTRONIX MSO5000 and DPO5000 series mixed signal oscilloscope
  • TOSHIBA DI Series Split Air Conditioner
  • TEKTRONIX 5A18N Dual Trace Amplifier
  • Toshiba Discrete IGBTs: Core Architecture, Technological Evolution, and Application Details
  • Foxboro G66 Triconex Tricon Termination Enclosure
  • Triconex Tricon v9-v11 fault-tolerant control system: triple module redundant architecture and high availability design
  • Tricon Triple-Modular Redundant Controller: TMR Architecture for Critical Process Safety
  • Triconex and Pepperl+Fuchs security solutions
  • TRICONEX Trident Controller
  • Woodward EM-80/EM-300 Electric Actuator Specification Guide
  • Woodward EM-80/EM-300 actuator system
  • SCHNEIDER Electric Magelis XBT Series HMI Product Comprehensive Guide and Technical Analysis
  • SCHNEIDER Magelis range Graphic XBT-F / TXBT-F Instruction Manual
  • SCHNEIDER XB2-B Ø 22mm series buttons, selection switches, and indicator lights
  • SCHNEIDER APC Back-UPS Pro Premium battery backup and surge protection for your critical devices
  • SCHNEIDER APC Back UPS Pro Series Uninterruptible Power Supply Complete Usage and Configuration Guide
  • User Guide for SCHNEIDER Service Interface (Part Number LV485500)
  • SCHNEIDER PowerPact ™ H. Modbus Communication User Guide for J and L-type Circuit Breakers
  • SCHNEIDER TeSys D Green series AC/DC universal contactor
  • SCHNEIDER mart series low-voltage distribution products
  • SCHNEIDER TeSys ® GV2/GV3 series motor circuit breakers
  • Schneider Electric ComPacT NSX DC Circuit Breaker Full Solution and Application Guide
  • SCHNEIDER Resi9 The ultimate in residential circuit protection
  • SCHNEIDER Modicon Premium Automation Platform and Unity Software
  • SCHNEIDER Quantum Safety PLC: Complete Analysis of SIL3 Safety Control System