Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

How to view the field of intelligent chemical industry?

来源: | 作者:佚名 | 发布时间 :2023-11-24 | 252 次浏览: | Share:

Although the production equipment control technology of the chemical industry as a whole is significantly different from that of the discrete manufacturing industry, the chemical industry and the discrete manufacturing industry are basically the same from the perspective of the overall digital solution structure of the enterprise. It is currently based on the Purdue Enterprise Reference Architecture (PERA) from the 1990s, as shown in the image above. At the top of this structure is the Enterprise Resources Planning (ERP) layer, which covers all aspects of a company's management and operations: sales, purchasing, production, distribution, human resources, customer service, corporate finance, and so on. The second layer is the Manufacturing Execution System (MES), which is responsible for arranging and coordinating the production equipment of the enterprise to execute and complete the order according to the order instructions issued by the ERP layer. It needs to be emphasized here that compared with discrete manufacturing, the biggest pain point of the traditional PERA architecture in the application scenario of process manufacturing, especially the chemical industry, occurs in this second layer MES. First of all, the key to MES ensuring the timely completion of target orders lies in the accurate estimation of a key parameter, which is called Overall Equipment Effectiveness (OEE), which is a percentage and the product of three percentage indicators. 

The three percentage indicators are: 

1. availability rate is used to measure the operating rate of equipment (planned time minus downtime, divided by planned time, multiplied by percentage). 

2. performance rate is used to measure the efficiency of the equipment (the ratio of the operating speed to the standard operating speed, representing the loss on the work) 

3. Quality Rate Measures the percentage of qualified products (the proportion of qualified products to total production)

In the discrete manufacturing industry with relatively strong OEE parameters estimated by MES, the competitive competitors with faster, more accurate, more flexible and more intensive operating performance have become the model template for peers to follow and chase, and in the chemical industry with generally weak OEE parameter estimation ability of MES, the competitive mentality of the players competing on the track is more subtle: Strategically, they play chess around raw materials and energy, but at the tactical level of production and operation, they are more like making sure that they "drive carefully for thousands of years" and then hoping that each other will retire from the game without a fight. So the chemical industry is not so much competing as heavier than rotten ingredients. Then the question comes, compared with discrete manufacturing, why MES in the chemical industry can be so weak to predict OEE parameters, so that there is often so much uncertainty in the delivery of orders on time? The main problem is that the latter three layers of PERA are not as digitalized as discrete manufacturing. 

These last three layers are the Supervisory Control and Data Acquisition (SCADA) layer, the control system layer dominated by DCS/ PLCS, and the field production equipment layer connected to various sensors. In simple terms, Layer 3 SCADA in the chemical industry monitors abnormal fault alerts based on real-time data generated by the production line, but does not have predictive maintenance functions. This function is the key function of the MES layer to accurately predict OEE parameters, which can be detected in advance according to daily data 1-2 months before serious abnormalities occur in the aging production equipment and notify the ERP layer to arrange the purchase of new equipment and parts and uninterrupted replacement, so as to avoid the unplanned parking and maintenance major surgery in the above two news. The second layer of control system is mainly based on PID controller, which has no ability of model predictive control (MPC) technology to prospectively control the dynamic behavior of the process from the internal mechanism. At present, most discrete manufacturing industries (such as automobiles and home appliances) can realize the automatic replacement of MPC, while the MPC application rate of chemical industry is still not high, the most simple and intuitive explanation is: using a mathematical model to predict the appearance of a basin of water poured out is far more difficult than predicting the appearance of billiard balls hitting each other. To maximize the value of predictive maintenance and model predictive control in the chemical industry, the key is to be able to create high-precision digital twins for chemical production lines, as in the discrete manufacturing industry, and cloud computing, edge computing and 5G signal technology to measure, transmit and process data in large throughput as the infrastructure to "feed" the digital twin in real time. Although the world is still in the exploratory stage for the commercialization of smart chemical industry, I think the biggest gap between China and Europe and the United States is the chemical digital twin model, rather than cloud computing, edge computing and 5G technology. 

  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module
  • GE IS410STCIS2A IS400STCIS2AFF Industrial Control Module
  • GE DS200DCFBG2BNC DS200DCFBG1BNC DC Feedback Board
  • GE VME5565 VMIVME-5565-11000 332-015565-110000 P Reflective Memory
  • GE VMIVME-7807 VMIVMME-01787-414001 350-00010078007-414001 D module
  • GE IS220PDOAH1A 336A4940CSP2 Discrete Output Module
  • GE VMIVME-4150 Analog Output Module
  • GE WESDAC D20 PS Industrial Power Module
  • GE 369B1860G0031 servo drive module
  • GE 369B1859G0021 Input/Output Module
  • GE 208D9845P0008 Motor Management Relay
  • GE IS420UCSCH1A-F.V0.1-A Independent Turbine Controller
  • GE D20EME10BASE-T 820-0474 Ethernet Interface Module
  • GE DS200DCFBG2BNC MRP445970 DC Feedback Board
  • GE IC800SSI228RD2-EE servo motor controller
  • GE IS200JPDMG1ACC S1AT005 Digital Input/Output (I/O) Module
  • GE IS200TSVCH1AED servo input/output terminal board
  • GE IS200TTURH1CCC S1DF00Z Terminal Turbine Plate
  • GE IS200TSVCH1ADC S1CX01H servo input-output board
  • GE IS200TRPGH1BDD S1C5029 Trip Solenoid Valve Control Board
  • GE IS220YAICS1A L Analog Input/Output Module
  • GE UCSC H1 IS420UCSCH1A-F-VO.1-A Controller Module
  • GE UCSC H1 IS420UCSCH1A-B Communication Processing Module
  • GE IC697VDD100 Digital Input Module
  • GE V7768-320000 3509301007768-320000A0 Controller Module
  • GE IS410TRLYS1B Relay Output Module
  • GE IS415UCVGH1A V7666-111000 VME Control Card
  • GE IC800SSI216RD2-CE servo motor controller
  • GE VMIVME-5565-010000 332-01565-010000P Reflective Memory
  • GE IC695ALG508-AA Analog Input Module
  • GE IC660EPM100J Power Monitoring and Control Module
  • GE RS-FS-9001 362A1052P004 Redundant Fan System Module
  • GE IS220UCSAH1AK independent processor module
  • GE 369-HI-0-M-0-0-0-E Motor Management Relay
  • GE CIFX50-C0 interface board
  • GE SR469-P5-H-A20-T Motor Management Relay
  • GE WES5120 2340-21005 power module
  • GE WES5120 2340-21003 Control Module
  • GE D20MIC10BASE-T 820-0756 Ethernet Module
  • GE WES13-3 5167-001-0210 Mechanical Relay Output Module
  • GE WES13-3 2508-21001 Control Board Module
  • GE D20ME 526-2005-216943 Input/Output Module