Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

The main source of chemical fiber is oil, so some people joke that "this is an era of wearing oil", then what is the past life of chemical fiber?

来源: | 作者:佚名 | 发布时间 :2023-11-29 | 313 次浏览: | Share:

Since ancient times, human life has been closely related to fiber. 50,000 to 100,000 years ago, with the degradation of body hair, humans began to use natural clothing such as hide, bark and grass leaves to cover the body and keep warm. Later, humans mastered the technology of separating and refining plant fibers.

Ten thousand years ago, humans were able to use sheep hair directly. In the early cultures of China, Egypt and South Africa, there are some records of spinning yarn and weaving cloth from natural fibers, dating back to 3000 BC. Flax, for example, was used in Central Europe as early as the Neolithic Age. Cotton has been used in India as long as linen has been used in Europe.

Silk has been found in China since 2640 BC, and the unearthed cultural relics of the Shang Dynasty prove that a variety of silk has been used in the highly developed weaving technology at that time. Wool was also used in Central Asia at the end of the Neolithic Age. Therefore, it can be said that hemp, cotton, silk and wool, which are now widely used as natural fibers, have been applied worldwide since BC.

Compared with the long history of natural fibers, the history of chemical fibers is still very short.

Although Hook had already proposed the idea of chemical fibers in his book Micrographia in 1664, scientists were at a loss to develop chemical fibers because they could not understand the basic structure of fibers, which led to the realization of this wonderful idea more than 200 years later.

Innovation and the initial stage

Cellulose nitrate

In 1846, the German F. chonbein made cellulose nitrate by treating wood cellulose with nitric acid.

In 1855, G.Audemars obtained the first patent in the history of the world's chemical fibers. He proposed to treat the bast fibers of mulberry branches with nitric acid, dissolve them in a mixture of ether and alcohol, and then draw silk through a steel nozzle.

In 1862, the Frenchman M. Ozanam proposed the idea of using spinneret spinning.

In 1883, the British J. W. wan obtained a patent for spinning with acetic acid solution of nitrocellulose, and then carbonizing to produce incandescent filament. He also believed that this silk could be used for weaving, and called it "rayon".

In the same year, the French Chardonnet obtained the most famous patent for the manufacture of chemical fibers from cellulose nitrate, and in 1891 in Besancon produced nitrate ester fibers (cellulose nitrate fibers) on an industrial scale, which marked the beginning of the industrialization of chemical fibers in the world. Subsequently, various forms of artificial cellulose fibers (including copper ammonia fiber, viscose fiber and acetate fiber) have been developed. However, nitrate ester fiber develops slowly because its textile performance is not as good as viscose fiber.

Copper ammonia fibre

In 1857, the German Schweizer invented the method of preparing copper ammonia cellulose.

In 1890, Despassie proposed a method for preparing cellulose fibers from copper ammonia solution. In Germany, Oberbruch, near Aachen, was the first to produce cellulose fibers by the copper ammonia process, and in 1899, the Glanzstoff company, the predecessor of Enka, was established to realize the industrialization of copper ammonia fibers. Bemberg further developed the copper ammonia process. Copper ammonia fiber can not compete with viscose fiber in cost due to the higher price of copper ammonia as a solvent, so it is only used for a few textiles and artificial kidneys.

glue

In 1891, three Englishmen, C.F. ross, E.J. Evans and C.B. Adle, invented a new method of dissolving cellulose into a solution, the viscose method, and obtained patents in Britain and Germany in 1892. The German company H.V. Dennersmarck obtained a license to use the patent in Central Europe and set up a factory in 1901, but production was not normal until 1910. The rights were purchased by the British Courtaulds company, which first industrialised in 1904, becoming the world's first mass-produced chemical fibre variety. Towards the end of the First World War, staple fibers were produced by cutting viscose filaments.

In 1921, the Premnitz factory in Germany produced viscose staple fibers that could be used for textile purposes. During this period, high-strength viscose filaments for industrial use were also developed.

Acetate fibre

At the same time, in 1869, the German P. Schutzenberger successfully studied the use of acetic anhydride for the acetylation of cellulose on a laboratory scale.

In 1904, the Bayer dye Company applied for a patent for spinning acetate fibers based on the invention of the German A.E. ichengrun, but delayed for more than 20 years before the joint venture of IG-Farbenindustrie and Glanzstoff was put into production in 1926. The United States Cellanese company first realized the industrialization of acetate fiber in 1924. The use of acetate fiber in the textile field is limited to lining cloth and so on, so the development is not fast. But it has been devoted to the material of cigarette filters.

Regenerated protein fibre

Since the early 20th century, various regenerated protein fibers have also appeared.

  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module
  • GE IS410STCIS2A IS400STCIS2AFF Industrial Control Module
  • GE DS200DCFBG2BNC DS200DCFBG1BNC DC Feedback Board
  • GE VME5565 VMIVME-5565-11000 332-015565-110000 P Reflective Memory
  • GE VMIVME-7807 VMIVMME-01787-414001 350-00010078007-414001 D module
  • GE IS220PDOAH1A 336A4940CSP2 Discrete Output Module
  • GE VMIVME-4150 Analog Output Module
  • GE WESDAC D20 PS Industrial Power Module
  • GE 369B1860G0031 servo drive module
  • GE 369B1859G0021 Input/Output Module
  • GE 208D9845P0008 Motor Management Relay
  • GE IS420UCSCH1A-F.V0.1-A Independent Turbine Controller
  • GE D20EME10BASE-T 820-0474 Ethernet Interface Module
  • GE DS200DCFBG2BNC MRP445970 DC Feedback Board
  • GE IC800SSI228RD2-EE servo motor controller
  • GE IS200JPDMG1ACC S1AT005 Digital Input/Output (I/O) Module
  • GE IS200TSVCH1AED servo input/output terminal board
  • GE IS200TTURH1CCC S1DF00Z Terminal Turbine Plate
  • GE IS200TSVCH1ADC S1CX01H servo input-output board
  • GE IS200TRPGH1BDD S1C5029 Trip Solenoid Valve Control Board
  • GE IS220YAICS1A L Analog Input/Output Module
  • GE UCSC H1 IS420UCSCH1A-F-VO.1-A Controller Module
  • GE UCSC H1 IS420UCSCH1A-B Communication Processing Module
  • GE IC697VDD100 Digital Input Module
  • GE V7768-320000 3509301007768-320000A0 Controller Module
  • GE IS410TRLYS1B Relay Output Module
  • GE IS415UCVGH1A V7666-111000 VME Control Card
  • GE IC800SSI216RD2-CE servo motor controller
  • GE VMIVME-5565-010000 332-01565-010000P Reflective Memory
  • GE IC695ALG508-AA Analog Input Module
  • GE IC660EPM100J Power Monitoring and Control Module
  • GE RS-FS-9001 362A1052P004 Redundant Fan System Module
  • GE IS220UCSAH1AK independent processor module
  • GE 369-HI-0-M-0-0-0-E Motor Management Relay
  • GE CIFX50-C0 interface board
  • GE SR469-P5-H-A20-T Motor Management Relay
  • GE WES5120 2340-21005 power module
  • GE WES5120 2340-21003 Control Module
  • GE D20MIC10BASE-T 820-0756 Ethernet Module
  • GE WES13-3 5167-001-0210 Mechanical Relay Output Module
  • GE WES13-3 2508-21001 Control Board Module
  • GE D20ME 526-2005-216943 Input/Output Module