Despite these accidents, nuclear energy is very safe compared to other industries (more on that below).
2. Why use nuclear power?
Nuclear power is a powerful carbon-free energy source that:
Safer and cleaner than fossil fuels
More stable and reliable than renewable energy
Save space and resources
carbon-free
Nuclear power, along with solar, hydro, wind and geothermal - collectively referred to as "renewables" - produces no carbon emissions. At a time when the world is considering the current and future impacts of climate change and is committed to aggressive emission reduction targets, zero emissions is a powerful advantage.
All-weather availability
People are used to the light coming on at the flick of a switch, so power generation equipment needs to be ready to meet consumer demand no matter what time of day or weather. To meet this demand, the grid needs access to consistently reliable power, not dependent on whether the wind is blowing or the sun is shining.
The capacity factor of solar power, or the percentage of its generating time, is 17-28%. There are also significant variations in output, for example, at night when there is no sun, there is no output at all. Wind power generates about 32-47% of the electricity. Due to the intermittency of power generation, a grid made up of mostly renewable energy sources would not be able to provide the power supply required by the grid. Nuclear energy has a capacity factor of more than 90%, which makes it an excellent source of baseload power - providing electricity consistently and reliably.
Minimal, manageable waste
The biggest problem with nuclear waste is the widespread perception that it is dangerous. Unlike other energy industries, nuclear power deals with its waste (also known as spent fuel), keeps it under control, makes it safe, and doesn't affect the environment. Nuclear fuel and its waste are also small in volume. All the nuclear waste in the United States could fit into a football field and be piled less than 10 yards high.
In addition, the spent fuel can be recycled and used again as fuel for the reactor. Regulations stemming from the anti-nuclear weapons movement currently prevent the recycling of nuclear fuel in the United States, however, the fact that the Department of Energy is supporting demonstrations of new reactors using recycled fuel is a positive sign that we may be seeing things change.
Finally, spent fuel has a perfect safety record - it has never killed or injured anyone and is safely contained at the power plant site. For example, air pollution from the burning of fossil fuels causes 1 million premature deaths worldwide every year. Solar panels produce 300 times more toxic waste per unit of energy than nuclear power, and there are no requirements for storing this waste safely. As a result, solar panels began to end up in landfills at the risk of toxic chemicals leaching into groundwater.
reliable
The term "carbon-free" has another meaning: it requires no carbon resources at all. Many countries have virtually no carbon resources within their borders, so having energy sources that are not dependent on fossil fuel imports can make the country more energy secure. The more diverse a country's energy sources, the better. Germany, for example, is far more dependent on imported fossil fuels than France, and thus more exposed to the impact of the global energy crisis on the gas supply chain.
secure
Nuclear power is far safer than fossil fuels, especially coal, and rivals renewables in terms of deaths per megawatt of electricity generated. Particulate matter from coal shortens lives, and accidents caused by fossil fuels (such as gas pipeline explosions) kill far more people than nuclear (and wind and solar, which are also very safe). There have been no deaths from commercial nuclear power in the United States, and relatively few abroad, especially compared to other energy sources.
Save space and energy
Nuclear energy is produced on a very small footprint; A typical factory requires only about one square mile. In comparison, to produce the same amount of energy, wind requires 260-360 times more land and solar 45-75 times more land. With such a small footprint, nuclear power leaves more land for other uses, including environmental protection.
3. Challenges of nuclear energy
Nuclear power has a strong advantage in achieving the carbon-free and reliable energy sources we want. Why hasn't it become the obvious answer to building aggressively across the United States? Several major headwinds remain: overly burdensome regulation, lukewarm public perception, limited government support, and construction costs.
Too much onerous regulation
The nuclear Regulatory Commission (NRC), the regulator of the nuclear industry, is tasked with protecting public health and safety as well as the environment. The incentives inherent in this make it incredibly risk-averse, with little reason to consider cost-benefit trade-offs such as the health effects of nuclear versus coal, climate change, energy reliability, or energy security in decision-making. This in turn means that long timelines and onerous quality assurance requirements are not seen as a bad thing, but rather as something that may be seen as constructive from a narrow, safety-oriented perspective.
email:1583694102@qq.com
wang@kongjiangauto.com