Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

CO2 Emissions in 2022

来源: | 作者:佚名 | 发布时间 :2023-11-21 | 793 次浏览: | Share:

About this report

CO2 Emissions in 2022 provides a complete picture of energy-related greenhouse gas emissions in 2022. The report finds that global growth in emissions was not as high as some had originally feared amid the disruptions caused by the global energy crisis. This latest release brings together the IEA’s latest analysis, combining the Agency’s estimates of CO2 emissions from all energy sources and industrial processes, as well as providing information on energy-related methane and nitrous oxide emissions.

This report is part of the IEA’s support of the first global stocktake of the Paris Agreement, which will be finalized in the run up to COP28, the next UN Climate Change Conference, at the end of 2023. Find other reports in this series on the IEA’s Global Energy Transitions Stocktake page.

Energy-related CO2 emissions grew by 0.9% to over 36.8 Gt in 2022

Global carbon dioxide (CO2) emissions from energy combustion and industrial processes1 grew 0.9% or 321 Mt in 2022 to a new all-time high of 36.8 Gt. This estimate is based on the IEA’s detailed region-by-region and fuel-by-fuel analysis, incorporating the latest official national statistics and publicly available data on energy use, economic indicators, and weather.

Last year’s increase follows two years of exceptional oscillations in energy-related emissions. Emissions shrank by more than 5% in 2020, as the Covid-19 pandemic cut energy demand. In 2021, emissions rebounded past pre-pandemic levels, growing more than 6% in tandem with economic stimulus and the roll-out of vaccines.

CO2 emissions from energy combustion grew by around 1.3% or 423 Mt in 2022, while CO2 emissions from industrial processes declined by 102 Mt. Emissions growth in 2022 was below global GDP growth (+3.2%), reverting to a decades-long trend of decoupling emissions and economic growth that was broken in 2021. Meanwhile, improvements in CO2 intensity of energy use were slightly slower than the past decade’s (2012-2021) annual average.

There were divergent trends between regions and sectors. CO2 emissions grew in North America and Asia (excluding People’s Republic of China [“China” hereafter]), outweighing reductions from Europe and China. At a global level, CO2 emissions from power and transport (including international bunkers) grew by 261 Mt and 254 Mt, respectively, more than offsetting reductions from industry and buildings.


Greater deployment of clean energy technologies helped prevent further emissions growth amid crises

In an exceptionally turbulent year with Russia's invasion of Ukraine, energy price shocks, rising inflation, and major disruptions to traditional fuel trade flows, global growth in emissions was lower than anticipated.

Impressive growth of solar PV and wind generation helped prevent around 465 Mt CO2 in power sector emissions. Other clean energy technologies, including other renewables, electric vehicles, and heat pumps, helped prevent an additional roughly 85 Mt CO2. Without this increased growth in clean energy deployment, the annual increase in energy-related emissions would have been almost triple. Emissions reductions also resulted from economic slowdowns, including 155 Mt CO2 from decreases in energy-intensive industrial production, mainly in China, the European Union, Japan, Korea and North America.

Specific challenges in 2022 also contributed to the global increase in emissions. Of the overall increase of 321 Mt CO2, extreme temperatures contributed 60 Mt from heating and cooling for buildings. The decline in nuclear power generation, due to both maintenance and continued phase-outs, led to another 55 Mt CO2.

Reductions in emissions from natural gas were more than replaced by emissions from coal

Emissions from natural gas decreased by 1.6% or 118 Mt in 2022, as an already tight gas supply was exacerbated by Russia’s invasion of Ukraine and the widespread trade disruptions that followed.

Emissions reductions were particularly pronounced in Europe, where they fell by 13.5%, with the strongest year-on-year reductions coming in the last months of the year. European gas prices reached record highs in 2022 following a sharp decline in Russian gas flows. However, a mild start to winter helped reduce household heating demand. In the Asia Pacific, LNG spot prices also spiked, and natural gas emissions declined by 1.8%, the largest year-on-year decline ever seen in the region. By contrast, natural gas demand remained robust in the United States and Canada, where emissions from gas increased by 5.8%.

Coal emissions grew 243 Mt to a new all-time high of almost 15.5 Gt. This 1.6% increase was faster than the 0.4% annual average growth over the past decade.


Oil emissions grew the most last year

Emissions from oil grew by 2.5% (or 268 Mt) to 11.2 Gt in 2022. Around half of the year-on-year increase came from aviation as air travel continued its recovery from pandemic lows. The rebound to pre-pandemic emissions levels was faster in advanced economies, where last year’s aviation emissions reached 85% of 2019 levels, compared with 73% in emerging market and developing economies.

Total transport emissions increased by 2.1% (or 137 Mt), also driven by growth in advanced economies. Nonetheless, emissions would have been higher without the accelerating deployment of low-carbon vehicles. Electric car sales surpassed 10 million in 2022, making up over 14% of global sales. If all new electric cars on the road had been typical diesel or gasoline cars, global emissions last year would have been another 13 Mt higher.

Despite promising growth in renewables, power sector emissions had the largest sectoral growth

The largest absolute sectoral increase in emissions in 2022 was from electricity and heat generation. Electricity and heat sector emissions increased by 1.8% (or 261 Mt), reaching an all-time high of 14.6 Gt. Gas-to-coal switching in many regions was the main driver of this growth: CO2 from coal-fired power generation grew by 2.1%, led by increases in Asian emerging market and developing economies. Natural gas emissions in the power sector remained close to 2021 levels, propped up most significantly by an increase in the United States.

Global electricity demand increased by 2.7%, and overall carbon intensity of the electricity generation declined by 2.0%, resuming a nine-year trend that had been broken in 2021.

The resumed decline in carbon intensity resulted from the fast deployment of renewables across all regions, with renewables meeting 90% of global growth in electricity demand. Solar PV and wind generation each increased by around 275 TWh, helping to avoid around 465 Mt in power sector emissions. Although several countries registered severe droughts in 2022, global hydro generation grew by 52 TWh from 2021’s levels, which were low because of water shortages in many regions.


Reliance on coal- and gas-fired power in extreme weather drove up emissions across regions

Emissions were pushed up by reliance on fossil fuel power plants to meet excess cooling demand during extreme summer heat, with cooling degree days across several regions in 2022 exceeding typical levels or even the maximum seen between 2000 and 2021. In the United States, the share of natural gas in the power fuel mix surpassed 40% in July and August. Coal power generation in China increased in August by around 15% year-on-year to exceed 500 TWh. In both countries, emissions levels for the first half of the year were lower than in 2021, before summer heat waves reversed the trend.

Europe saw the second warmest start to winter in the last 30 years, and as a result, emissions from buildings were lower than anticipated.

For the full year, cooling and heating demand from extreme weather pushed up global emissions by around 60 Mt CO2, around two-thirds of which came from additional cooling needs, and the remaining third from heating needs. This accounted for almost one-fifth of the total global increase in CO2 emissions.

China’s emissions barely changed from 2021 to 2022, amid Covid-19 lockdowns and a real estate slump

Energy-related emissions in China were relatively flat between 2021 and 2022, decreasing by 0.2% or 23 Mt to around 12.1 Gt. Emissions from energy combustion alone grew by 88 Mt, entirely due to increased use of coal, but this was more than offset by declines in emissions from industrial processes. The overall yearly decline was the first since structural reforms drove emissions lower in 2015.

While China significantly ramped up domestic coal production and coal power capacity additions last year, actual coal consumption did not fully keep pace. Tempered by a large increase in solar PV and wind generation, coal accounted for around three-fifths of the fuel mix in electricity generation. Total electricity demand grew much slower than the average seen over the last decade. As such, emissions from coal-fired power increased by around 3%, in part due to the ramp-up of coal power plants during heat waves, as well as to increasing reliance on electricity or district heating fuelled by coal.

Industry sector emissions declined, but the effects of China’s crackdown on debt-financed property and the ongoing real estate slump were not fully reflected in 2022 industry emissions. Construction new starts were down by around 40% year-on-year, while the production of steel and cement were just 2% and 10% lower than in 2021, respectively. As a result, China’s industry sector emitted 161 Mt less than the year before, with a large share of this decline from process emissions. China’s unprecedentedly large year-on-year decline pulled down global industry emissions.

In contrast to the global growth in transport sector emissions, China’s transport emissions registered a 3.1% decrease in 2022. Covid-19 measures were strongly reinforced in comparison to 2021, including total lockdowns in major cities and restrictions on crossing prefecture or province boundaries. At the same time, electric car sales reached 6 million in 2022, preventing further emissions from diesel and gasoline cars.

Energy crisis pushed European Union to cut emissions through clean power and demand reduction measures

Despite the coinciding challenges of oil and gas market disruptions, hydro shortfalls due to drought, and numerous nuclear plants going offline, the European Union reduced its emissions by 2.5% (or 70 Mt), thanks to a mild winter, effective energy conservation measures, fuel switching, behaviour changes, and industrial production curtailments. Reduced natural gas emissions more than offset increases in emissions from coal and oil.

Buildings sector emissions declined the most, by 60 Mt, enabled by exceptionally mild weather from October to December 2022 – the second warmest start to winter in the last 30 years – and collective energy conservation measures. Average electricity consumption was lower, even accounting for weather, and electricity use was less sensitive to temperature changes in 2022 than in 2019, pointing to the role of behaviour change. EU heat pump sales reached 2.8 million, more than doubling in several countries from the previous year. Meanwhile industry sector COemissions declined by 42 Mt. 

Power sector emissions increased by 28 Mt even though electricity demand declined, as a temporarily higher reliance on coal increased carbon intensity. A 15% increase in wind and solar PV generation helped prevent further coal use with wind and solar PV for the first time jointly overtaking gas as well as nuclear as the top source of Europe’s electricity generation. This record-breaking increase in solar PV and wind generation avoided almost 75 Mt CO2 of emissions. Without hydro generation decreasing by 21% year-on-year and nuclear by 17%, another 80 Mt could have been averted.


  • FOXBORO P0916VB power supply module
  • GE Hydran M2-X Transformer Condition Monitoring Device
  • FOXBORO P0916VL control module
  • FOXBORO P0916VC High Performance Terminal Cable
  • FOXBORO P0916WG system module
  • FOXBORO P0972ZQ interface channel isolation 8-input module
  • FOXBORO P0973BU high-frequency fiber optic jumper
  • FOXBORO P0926MX Splasher Confluencer
  • FOXBORO P0961S connector module
  • FOXBORO P0903NU system module
  • FOXBORO CM902WM control module
  • FOXBORO P0972VA ATS Processor Module
  • FOXBORO P0916Js digital input terminal module
  • FOXBORO PO961BC/CP40B control module
  • FOXBORO PO916JS Input/Output Module
  • FOXBORO PO911SM Compact Monitoring Module
  • FOXBORO P0972PP-NCNI Network Interface Module
  • FOXBORO P0971XU Control System Module
  • FOXBORO P0971DP Controller
  • FOXBORO P0970VB control module
  • FOXBORO P0970BP (internal) cable assembly
  • FOXBORO P0961EF-CP30B High Performance Digital Output Module
  • FOXBORO P0961CA fiber optic LAN module
  • FOXBORO P0926TM Modular I/O PLC Module
  • FOXBORO P0916BX series control system input/output module
  • FOXBORO P0916AG Compression Period Component
  • FOXBORO P0916AC I/A series module
  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module