Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Features of new power system with new energy as the main body

来源: | 作者:佚名 | 发布时间 :2024-01-25 | 907 次浏览: | Share:

Secondly, the load side has strong uncertainty. In the future, electric energy will gradually become the most important energy consumption in the years after electricity will replace coal in the dominant position in terminal energy consumption. The existing power load changes relatively regularly, and the operation mode of the entire power system is relatively fixed. For example, when planning the power system, it can be predicted by selecting the load curve of typical days or hours in different seasons. Under high electrification, the load structure is diversified, the random distribution of electric behavior such as electric vehicle charging and electric heating, and the active characteristics of the user side are prominent, which will aggravate the unpredictability of the load. At present, the peak-valley difference of China's power grid load is gradually increasing.

Thirdly, power flow has strong uncertainty. When less new energy is connected to the grid, the operation mode of the traditional power system is relatively fixed due to the regularity of load phase pairs. In the high ratio new energy power system, the "boundary conditions" of power system operation will be more diversified due to the large uncertainty in the source and load end. The power flow of the link line of the transmission network may vary greatly with the output fluctuation of new energy (even two-way flow), and the distributed new energy and virtual power plants of the distribution network will also change the power flow.

2. The evolution from electromechanical equipment to power electronic equipment

The grid-connection, transmission and consumption of new energy have introduced more power electronic equipment at the source-net-load end, and the power system has shown a significant trend of power electronization. Therefore, the basic characteristics of the power system will change from the electromechanical steady-state process dominated by the rotating motor to the electromagnetic transient process dominated by the power electronic equipment. The existing thermal power, hydropower and other traditional units use synchronous motor, with strong mechanical inertia, so the power system has a large time constant (second - minute level), the system frequency to power frequency (50 Hz). Power electronic devices have low inertia, low short circuit capacity, weak immunity and multi-time scale response, resulting in a smaller time constant (millisecond level), wider frequency domain (hundreds of Hertz), and more complex security domain. Multiple factors such as electromechanical transient and electromagnetic oscillation of the system interact with each other under various disturbance situations. For example, the current transient voltage support in the new energy base, the high/low voltage crossing shutdown of the wind turbine connected to the grid, broadband oscillation, and the failure of multi-feed DC commutation are all specific manifestations of the power electronic system.

3. Evolution from a single power system to an integrated energy system

Energy Internet needs to build a comprehensive energy network based on the new energy power system and interconnected with natural gas, transportation, construction and other fields. Therefore, the existing power system will be interconnected with the heat network, natural gas network and transportation network to form a comprehensive energy system. Moreover, the storage and transmission of natural gas and hydrogen energy will be deeply integrated with the power system and play an important role in peak regulation.

(2) The deficiency of the existing power system technology system

Under the existing technical conditions, the new energy output uncertainty is strong, with randomness, volatility, anti-peak regulation characteristics, "extremely hot no wind", "late peak no light", "large installed capacity, small power" has become the industry drawbacks. The evolution from the existing power system to the new power system will face important technical challenges. The existing technical system is not enough to support the construction of the new power system in the future. The main shortcomings are as follows:

(1) Insufficient overall coordination of power supply and grid planning. The construction of supporting power supply at the sending end lags behind and the carrying capacity of the receiving end is insufficient. The power grid structure can not fully meet the needs of large-scale resource allocation and distributed extensive access.

(2) The power system balance capacity is seriously insufficient. New energy units do not have the same power grid security and stability support capacity as traditional power units, and the ability to withstand power grid disturbance is low. The existing flexible power supply adjustment capacity of thermal power transformation and pumped storage is insufficient, which can not fully meet the needs of system peak regulation and frequency regulation in the case of high proportion of new energy access.

(3) Insufficient regulation and control capacity of the power system. There have been some safety problems in the system operation, such as insufficient dynamic reactive power support, insufficient frequency regulation and stability, excessive short-circuit current, and interweaving of traditional synchronous stability and new form stability. In addition, the "weak scheduling" or "no scheduling" characteristics of a large number of emerging distributed generation causes the difficulty of coordinated operation control of power systems to increase continuously. Due to the "data chimney", the foundation of the "generation - grid - user" degree system has not been fully established.

  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card