Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:
  • ABB UNS2980c-ZV4 Programmable logic controller
    ❤ Add to collection
  • ABB UNS2980c-ZV4 Programmable logic controller

    110V-380V
    5W-130W
    1A-30A
    1 year
    30
    United States, France, Japan, Viet Nam, Australia, Russia, Germany, Italy, Arabia

    The UNS2980c-ZV4 PLC is an electronic device designed for industrial automation applications that employs a programmable memory for storing instructions within it to perform operations such as logical operations, sequential operations, timing, counting, and arithmetic operations, and for controlling various types of machinery or production processes by means of digital or analogue inputs and outputs. The PLC is highly reliable and stable, and is capable of meeting the needs of a wide range of complex industrial automation applications.

    • ¥23650.00
      ¥24520.00
      ¥23650.00
      ¥23650.00
    • Satisfaction:

      Sales: 0

      Review: 0

    Weight:3.600KG
    • Quantity:
    • (Inventory: 35)
Description

The UNS2980c-ZV4 PLC is an electronic device designed for industrial automation applications that employs a programmable memory for storing instructions within it to perform operations such as logical operations, sequential operations, timing, counting, and arithmetic operations, and for controlling various types of machinery or production processes by means of digital or analogue inputs and outputs. The PLC is highly reliable and stable, and is capable of meeting the needs of a wide range of complex industrial automation applications.


ABB UNS2980c-ZV4 Programmable logic controller

Product Overview

The UNS2980c-ZV4 PLC is an electronic device designed for industrial automation applications that employs a programmable memory for storing instructions within it to perform operations such as logical operations, sequential operations, timing, counting, and arithmetic operations, and for controlling various types of machinery or production processes by means of digital or analogue inputs and outputs. The PLC is highly reliable and stable, and is capable of meeting the needs of a wide range of complex industrial automation applications.


Key features

High reliability and stability: UNS2980c-ZV4 PLC adopts high-quality electronic components and manufacturing process, which has high reliability and stability, and can adapt to a variety of harsh working environments to ensure the long-term stable operation of the equipment.

Advanced control technology: the PLC integrates advanced control technology, capable of realising high-precision position, speed and torque control, as well as complex logic operations and control algorithms, to meet the requirements of the equipment for machining precision and working efficiency.

Compact design and structure: UNS2980c-ZV4 PLC adopts compact design and structure, which is small and compact, easy to install and maintain. It also provides rich interfaces and communication protocols for easy integration with other devices and systems.

Multiple communication protocols: It supports ModbusRTU/ASCII, Profibus DP/FMS, DeviceNet and other communication protocols, which is convenient for communication and data exchange with various industrial automation devices.

Powerful data processing capability: UNS2980c-ZV4 PLC has powerful data processing capability and supports multiple data processing methods, which can achieve real-time processing and analysis of input and output data, and improve the response speed and efficiency of the system.

Multiple programming languages: It supports multiple programming languages such as C/C++, VB, VC++, etc., which is convenient for users to program and debug according to actual needs.


Application Areas

UNS2980c-ZV4 PLC is widely used in various industrial automation fields, including but not limited to:

Machinery manufacturing: used for the control of CNC machine tools, machining centres and other equipment to achieve high-precision machining and positioning.

Automated production lines: used to control various automated equipment, such as robots, conveyor belts, etc., to achieve automated operation and monitoring of production lines.

Power system: for the control and monitoring of power equipment, such as transformers, generators, etc., to ensure the stable operation of the power system.

Other industrial automation fields: such as chemical, petroleum, metallurgy and other industries for automation control and monitoring.


Product Advantages

High performance: UNS2980c-ZV4 PLC adopts advanced control algorithm and hardware design, which provides excellent control performance and stability.

Easy to integrate: The PLC supports a variety of communication protocols and interface types, which is easy to integrate with other devices and systems, reducing the complexity and cost of system integration.

Easy maintenance: UNS2980c-ZV4 PLC has a friendly human-machine interface and rich debugging tools, which is convenient for users to carry out maintenance and debugging operations, and reduces the time and cost of troubleshooting and repair.

Expandability: The PLC supports a variety of expansion modules and accessories, which is convenient for users to expand and upgrade according to actual needs.


Precautions

When using the UNS2980c-ZV4 PLC, make sure that it is properly installed and wired according to the requirements in the product manual.

Regularly check the operating condition of the PLC to ensure that it works properly. If any abnormality or malfunction is found, please contact ABB customer service or professional maintenance personnel to handle it.

Avoid using the PLC in harsh environmental conditions, such as high temperature, humidity, dust and other environments, so as not to affect the performance and life of the PLC.


Basic Functions

Data buffer: Since the rate of I/O devices is low while the rate of CPU and memory is high, a buffer must be set up in the controller. In the output, the buffer is used to store the data coming from the host at high speed, and then the data in the buffer will be transmitted to the I/O device at the rate of the I/O device; in the input, the buffer is used to store the data coming from the I/O device, and then the data in the buffer will be transmitted to the host at high speed after a batch of data has been received.

Error control: The device controller also manages error detection of data sent from I/O devices. If an error is found in the transmission, the error detection code is usually set and reported to the CPU, which then cancels the transmitted data and transmits it again. This ensures the correctness of the data input.

Data exchange: This refers to the realisation of data exchange between the CPU and the controller, and between the controller and the device. For the former, it is through the data bus, by the CPU in parallel to write data into the controller, or from the controller in parallel to read out the data; for the latter, it is the device will be the data input to the controller, or from the controller to the device. For this purpose, data registers shall be set up in the controller.

Status Description: Identifies and reports the status of the device The controller shall note down the status of the device for the CPU to know. For example, the CPU can start the controller to read data from the device only when the device is in a transmit-ready state. For this purpose, a status register shall be set up in the controller with each bit therein reflecting a particular state of the device. When the CPU reads in the contents of this register, it will know the state of the device.

Receive and recognise commands: The CPU can send many different commands to the controller, and the device controller should be able to receive and recognise these commands. To this end, there should be a corresponding control register in the controller to store the received commands and parameters, and decode the received commands. For example, the disk controller can receive Read, Write, Format and other 15 different commands from the CPU, and some commands also have parameters; accordingly, there are several registers and command decoders in the disk controller.

Address recognition: Just as each unit in memory has an address, so does each device in the system, and the device controller must be able to recognise the address of each device it controls. In addition, in order for the CPU to be able to write to (or read from) registers, these registers should all have unique addresses.


  • User name Member Level Quantity Specification Purchase Date
  • Satisfaction :
No evaluation information
  • Honeywell Fusion4 MSC-L Multi Stream Loading Controller
  • Honeywell IPC 620-06 Programmable Controller
  • Honeywell Enhanced Micro TDC 3000 Control System
  • Honeywell Expert LS I/O System
  • Honeywell Expert PKS Universal Process Cabinet
  • KEBA KeConnect I/O: Modular Industrial Automation I/O System
  • KEBA FM 299/A GA1060 fieldbus main module
  • KEBA KeControl C1 CP 03x: Highly Integrated Embedded Industrial Controller
  • KEBA KeControl series controllers
  • KEBA KeConnect C5: High density modular IO system empowering industrial automation
  • KEBA DI 260/A Digital Input Module
  • Kollmorgen SERVOSTAR 600 (S600) series digital servo drive
  • Kollmorgen S300 Servo Drive Application Guide
  • Kollmorgen H series brushless servo motor and Silverline driver
  • Kollmorgen Servo System Product Guide
  • KOLLMORGEN S200 High Performance Compact Brushless Servo Drive
  • KOLLMORGEN IDC EC Series Electric Cylinder Configuration and Application Guide
  • Selection and Application of KOLLMORGEN E/H Series Stepper Motor
  • Kollmorgen AKD/S700 series servo drive
  • KOLLMORGEN Digifas-7200 Digital Servo Amplifier Application Guide
  • Kollmorgen SERVOSTAR-CD servo drive hardware installation and system configuration
  • MOOG QAIO 16/4 Analog I/O Module Technology Analysis and Application Guide
  • MOOG G128-809A DIN rail power supply
  • MOOG MSD Multi Axis Servo Drive System (DC-AC)
  • MOOG DM2020 Multi axis Servo Drive
  • MOOG M3000 ® Control system and MSC servo controller
  • MOOG G123-825-001 DIN rail buffer amplifier
  • MOOG Servo Electronics Products
  • MOOG T161 Series Rack Mount Digital Brushless Motor Controller
  • Motorola PTX series (PTX700/760/780) portable walkie talkies
  • MOTOROLA MVME2400 series VME processor module
  • MOTOROLA CPCI-6020 CompactPCI Single Board Computer
  • Motorola MVME162 Embedded Controller
  • Reliance Electric Engineering Drive System and DBU Dynamic Braking Unit
  • RELIANCE ELECTRIC INVERTRON DBU Dynamic Braking Unit
  • Reliance 57C413B/57C423 common memory module
  • Rockwell Automation AutoMax™ Distributed Power System
  • Reliance Electric AutoMax Programming Executive V3.5
  • Deep Analysis and Industrial Control Application of Reliance DCS 5000 Enhanced BASIC Language
  • Rockwell Automation MD60 AC Drive
  • COTEK SD Series Pure Sine Wave Inverter
  • RELIANCE ELECTRICI GV3000/SE AC General Purpose (Volts/Hertz) and Vector Duty Drive Version 6.06
  • ABB SACO16D1 Alarm Display Application Guide
  • REXROTH Indramat PPC-R Modular Controller Application Guide
  • REXROTH EcoDrive Cs series AC servo drive system
  • REXROTH IndraControl VEP Embedded Terminal Project Planning and Operation Guide
  • REXROTH IndraDyn S MSK series synchronous servo motor
  • REXROTH 4WRPEH series Directional control valves
  • REXROTH WE 6X series directional valve
  • REXROTH VT-HNC100... 3X Series Digital Axis Controller
  • REXROTH BTV04.2 Micro Control Panel Functions and Applications
  • REXROTH MKD Explosion proof Synchronous Motor Application Guide
  • REXROTH 4WRTE type electro-hydraulic proportional directional valve
  • REXRTOH IndraControl VDP series operation display
  • REXRTOH MSK series synchronous servo motor
  • REXRTOH ECODRIVE DKC Series Drive Controller Comprehensive Fault Diagnosis and Maintenance Guide
  • REXRTOH IndraDrive HMV01 series power supply unit
  • REXRTOH SE 200 Electric Tool Controller Details
  • REXRTOH INDRAMAT RAC 2 Spindle Drive Controller Application Guide
  • REXRTOH CDH1/CGH1/CSH1 series milling machine type hydraulic cylinder
  • REXRTOH MDD Digital AC Servo Motor Application Guide
  • REXRTOH DIAX04 Second Generation Driver Controller Application Guide
  • REXRTOH EcoDrive 03 Drive Controller
  • REXRTOH IndraDrive Controller CS Series Technical Analysis and Application Guide
  • REXRTOH A4VG series 40 axial piston variable displacement pump application guide
  • REXRTOH DDS02.1/03.1 Digital AC Servo Drive
  • REXRTOH VT-HPC Digital Pump Control
  • REXRTOH HNC100-3X Electro hydraulic Motion Control
  • ABB Advant Controller 250 Modular Controller
  • ABB QABP Low Voltage High Efficiency Variable Frequency Motor Application Guide
  • ABB Conductivity Analyzer Application Guide
  • ABB S500 Distributed Remote I/O System
  • ABB AC500 PLC Module Wiring Guide
  • ABB REG216 Digital Generator Protection System
  • Siemens SIRIUS Domestic Control and Protection System
  • Analysis and Application of Siemens SMART LINE V5 HMI Technology
  • SIEMENS CP 5613 A2/CP 5614 A2 Communication Processor
  • SIEMENS SIMOVERT MASTERDRIVES Vector Control Series
  • Siemens 5SN series terminal power distribution products: safe, efficient, and compact electrical solutions
  • Siemens SENTRON 5SY6106-7 miniature circuit breaker
  • Technical Analysis and Application Guide for Siemens SIMATIC TI505/TI500 MODNIM Module
  • Comprehensive Analysis and Configuration Guide for Siemens ET200SP Distributed I/O System
  • Technical Analysis and Application Guide for Siemens EG Frame Molded Case Circuit Breaker NEB/HEB Series
  • Siemens SENTRON 5SY Series Terminal Distribution Products Full Analysis: Innovative Technologies and Application Solutions
  • SIEMENS SIPROTEC 4 System: A Comprehensive Solution for Power Protection and Automation
  • Integration and Application of Siemens SIMO-MM3 Driver Control Block in PCS7 System
  • SINAMICS A10: Intelligent Servo Drive System with Integrated Safety and Efficient Debugging
  • Siemens SITOP UPS 1600/UPS 1100: High reliability DC uninterruptible power supply system for industrial automation
  • Comprehensive Analysis and Selection Guide for Siemens SICAM 8 Substation Automation Platform
  • Siemens SENTRON intelligent circuit protection equipment: full analysis of communication, measurement, and digital management
  • Siemens MOBY I RFID System Configuration and Application Guide
  • SIEMENS S7-1413 Communication Software Architecture and Application Detailed Explanation
  • SIEMENS SINUMERIK System 800 General Interface Technology Explanation and Configuration Guide
  • Siemens SINUMERIK 840C CNC System Installation and Debugging Guide
  • SIEMENS SIMATIC S5-115U Programmable Controller Comprehensive Analysis and Professional Application Guide
  • SIEMENS SIMATIC RF120C Communication Module Comprehensive Analysis and Application Guide
  • Comprehensive analysis and detailed explanation of key technologies for SIEMENS SIMADYN D hardware system
  • Comprehensive Analysis of Siemens TP/OP 170 Series Touch Screen and Operation Panel
  • SIMATIC MODNIM Module Deep Analysis: A Reliable Bridge for Industrial Modbus Communication
  • Comprehensive Analysis and Application Guide for SIEMENS S7-PLCSIM Advanced Simulation Software
  • Technical Analysis and Professional Operation Guide for SIEMENS 1FK6 Servo Motor
  • SIEMENS S7-300 PLC Beginner's Practice: From Hardware Installation to Program Debugging
  • In depth analysis and selection guide for SIEMENS 3AH3 vacuum circuit breaker technology
  • TEKTRONIX MSO5000 and DPO5000 series mixed signal oscilloscope
  • TOSHIBA DI Series Split Air Conditioner
  • TEKTRONIX 5A18N Dual Trace Amplifier
  • Toshiba Discrete IGBTs: Core Architecture, Technological Evolution, and Application Details
  • Foxboro G66 Triconex Tricon Termination Enclosure
  • Triconex Tricon v9-v11 fault-tolerant control system: triple module redundant architecture and high availability design
  • Tricon Triple-Modular Redundant Controller: TMR Architecture for Critical Process Safety
  • Triconex and Pepperl+Fuchs security solutions
  • TRICONEX Trident Controller
  • Woodward EM-80/EM-300 Electric Actuator Specification Guide
  • Woodward EM-80/EM-300 actuator system
  • SCHNEIDER Electric Magelis XBT Series HMI Product Comprehensive Guide and Technical Analysis
  • SCHNEIDER Magelis range Graphic XBT-F / TXBT-F Instruction Manual
  • SCHNEIDER XB2-B Ø 22mm series buttons, selection switches, and indicator lights
  • SCHNEIDER APC Back-UPS Pro Premium battery backup and surge protection for your critical devices
  • SCHNEIDER APC Back UPS Pro Series Uninterruptible Power Supply Complete Usage and Configuration Guide
  • User Guide for SCHNEIDER Service Interface (Part Number LV485500)
  • SCHNEIDER PowerPact ™ H. Modbus Communication User Guide for J and L-type Circuit Breakers
  • SCHNEIDER TeSys D Green series AC/DC universal contactor
  • SCHNEIDER mart series low-voltage distribution products
  • SCHNEIDER TeSys ® GV2/GV3 series motor circuit breakers
  • Schneider Electric ComPacT NSX DC Circuit Breaker Full Solution and Application Guide
  • SCHNEIDER Resi9 The ultimate in residential circuit protection
  • SCHNEIDER Modicon Premium Automation Platform and Unity Software
  • SCHNEIDER Quantum Safety PLC: Complete Analysis of SIL3 Safety Control System