Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

WOODWARD 5009XT Steam Turbine Controls

来源: | 作者:FAN | 发布时间 :2025-06-14 | 490 次浏览: | Share:

WOODWARD 5009XT Steam Turbine Controls

Product positioning and core values

WOODWARD 5009XT is a high-end digital controller designed for industrial steam turbine systems, specifically designed for multivariable control requirements under complex operating conditions. As the core product of Woodward's industrial turbine control series, it is positioned higher than the basic 2301E-ST and 505 series, focusing on medium to large steam turbine systems that require high reliability, redundant design, and flexible expansion, such as power plant turbines, industrial drive turbine units, etc. The core value of the product lies in achieving precise collaborative control of speed, load, and pressure through modular hardware architecture and advanced control algorithms. It also supports triple redundancy (TMR) configuration, meets SIL level safety requirements, and reduces the risk of critical equipment shutdown.


Specification parameters

Input power supply: Supports multiple commonly used power specifications, such as 120 VAC/DC, 220 VAC, etc., and can be flexibly selected according to actual application scenarios to meet the power supply needs of different industrial environments, with good power compatibility.

Control accuracy: The speed control accuracy is extremely high, reaching ± 0.1% of the rated speed, which can accurately maintain the operating speed of the steam turbine and ensure stable operation of the equipment under various working conditions, providing stable power output for the production process. In terms of load control, a load distribution error of ≤ 1% (when multiple machines are connected in parallel) can achieve efficient collaborative work among multiple steam turbines, optimizing the overall operational efficiency of the system.

Communication Interface: Equipped with a variety of communication interfaces, including Ethernet interface (supporting Modbus TCP protocol), CANopen interface (supporting DS301/DS401 protocol), and RS485 interface (supporting Modbus RTU protocol). These interfaces enable the 5009XT to easily interact and communicate with other devices, making it easy to integrate into the factory's distributed control system (DCS) or programmable logic controller (PLC) system for remote monitoring, parameter adjustment, and system level automation control.


Display and operation interface: It has an intuitive graphical human-machine interface (HMI), usually with a high-resolution display screen, which can clearly present various operating parameters of the steam turbine, such as speed, temperature, pressure, load, etc. The interface adopts a menu driven design, which is easy to operate. Even non professionals can quickly get started with parameter settings, system monitoring, and fault diagnosis. Supports multilingual display, making it convenient for users from different regions around the world to use.

Environmental adaptability parameters: The working temperature range is usually -20 ℃ to+60 ℃, which can adapt to a wide range of industrial environmental temperature changes, and can operate stably in both cold northern regions and hot southern regions. In terms of protection level, the front panel installation model can reach IP54, with a certain degree of dust and water splash resistance, which can effectively prevent dust and water droplets from entering the interior of the equipment and affecting its normal operation; The installation model of the cabin wall is generally IP20, suitable for relatively clean indoor environments. Some models also offer sulfur resistant conformal coating options to enhance the product's corrosion resistance in corrosive gas environments containing sulfur, ensuring long-term reliable operation in harsh industrial environments.


Working principle

The operation of the WOODWARD 5009XT steam turbine controller is based on the closed-loop control principle. Through real-time monitoring and feedback of the operating parameters of the steam turbine, the control signal is continuously adjusted to achieve precise control of the steam turbine. The specific work process is as follows:

Parameter monitoring: The controller collects real-time operating parameters of the steam turbine through various sensors connected to the steam turbine system, such as speed sensors, temperature sensors, pressure sensors, vibration sensors, etc. These sensors convert physical quantities into electrical signals and transmit them to the input module of the controller.

Signal processing and comparison: The microprocessor of the controller processes and analyzes the input sensor signals, compares the collected actual operating parameters with the user's preset target values, and calculates the deviation between the two. For example, in speed control, the actual speed is compared with the preset speed target value to obtain the speed deviation value.


Control algorithm calculation: Based on the calculated deviation value, the controller uses an internal preset control algorithm, such as PID control algorithm, to perform calculation processing. The PID algorithm calculates the corresponding control quantity based on the proportional, integral, and derivative parameters of the deviation, in order to determine the amplitude and direction of the adjustment required for the steam valve opening. For example, if the actual speed is lower than the target speed, the PID algorithm will calculate a control signal to increase the opening of the steam valve to increase the steam flow into the turbine, thereby increasing the speed; On the contrary, if the actual speed is higher than the target speed, calculate the signal to reduce the valve opening.

Control signal output: The control quantity obtained through control algorithm calculation is converted into corresponding electrical or hydraulic signals (depending on the type of actuator) through the output module of the controller, and transmitted to the actuator of the steam valve. The actuator adjusts the opening of the steam valve based on the received control signal, thereby changing the steam flow rate and pressure entering the steam turbine.

Feedback and adjustment of operating status: With the change of steam valve opening, the operating status of the steam turbine changes, and its operating parameters also change accordingly. These new operating parameters are once again fed back to the controller through sensors. The controller repeats the process of monitoring, comparing, calculating, and outputting, continuously adjusting the control signal to keep the operating parameters of the steam turbine within the preset target range, achieving stable and precise control of the steam turbine. Throughout the entire working process, the controller will also monitor other status information of the system in real time, such as the start/stop status of the equipment, the fault status of each component, etc., and make corresponding adjustments to the control strategy based on this information to ensure the safe and reliable operation of the system.

Control Cabinet- 5009XT MICRONET + PROTECH-GII, (HV/HV, VOTED) + 220VAC ...

Precautions

Installation environment requirements: When installing the 5009XT controller, the appropriate installation environment should be strictly selected according to the requirements of the product manual. Avoid installation in places with high temperature, high humidity, strong electromagnetic interference, corrosive gases or dust to ensure the normal operation and service life of the controller. For example, when installing in a chemical production workshop, if there is a large amount of corrosive gas present, a model with anti-corrosion coating should be selected, and effective protective measures should be taken, such as installing in a sealed control cabinet. At the same time, it is necessary to ensure that the installation location has good ventilation and heat dissipation conditions to prevent the controller from being damaged due to overheating. For the model of front panel installation, attention should be paid to the requirements of protection level to avoid water splashing or dust entering the interior of the equipment.


Power connection and stability: Correctly connecting the power supply is the key to ensuring the normal operation of the controller. Be sure to connect according to the prescribed power specifications and wiring methods to ensure the stability and reliability of the power supply. In places with significant power fluctuations, it is recommended to install a voltage regulator or uninterruptible power supply (UPS) to prevent damage to the controller caused by abnormal power supply. At the same time, it is necessary to regularly check the connection of the power line to ensure that there are no loose or short circuits. In some remote areas or industrial sites with unstable power supply, using UPS can effectively avoid equipment failures and data loss caused by sudden power outages, ensuring the safe shutdown of steam turbine systems.

Matching and debugging of sensors and actuators: The 5009XT controller needs to be used in conjunction with various sensors and actuators, so in the selection and installation process, it is necessary to ensure the compatibility and matching of sensors and actuators with the controller. Different types of sensors and actuators have different technical parameters and working characteristics, such as range, accuracy, response time, etc., and should be selected reasonably according to actual application requirements and controller requirements. After installation, comprehensive debugging work should be carried out to ensure that the sensor can accurately collect the operating parameters of the steam turbine and transmit the signal correctly to the controller. At the same time, the actuator can accurately adjust the opening of the steam valve according to the control signal sent by the controller. During the debugging process, it is necessary to carefully check whether the installation position of the sensor is correct, whether the wiring is firm, and whether the action of the actuator is flexible and smooth. If there are any problems, they should be adjusted and repaired in a timely manner.


Parameter setting and optimization: When using the 5009XT controller, users should set various control parameters reasonably according to the actual operating conditions of the steam turbine and production process requirements. Improper parameter settings may lead to unstable device operation, decreased control accuracy, and even potential safety hazards. Before setting parameters, it is necessary to fully understand the performance characteristics, working conditions, and control requirements of the steam turbine, and refer to the product manual and relevant technical materials for setting. During the operation of the equipment, parameters can be optimized and adjusted according to the actual operating effect to achieve the best control effect. For example, when the load of a steam turbine varies greatly, it may be necessary to adjust the PID control parameters appropriately to improve the system's response speed and stability. At the same time, it is important to keep records of parameter settings so that they can be quickly restored to the correct settings during equipment maintenance or controller replacement.

Regular maintenance and upkeep: To ensure the long-term reliable operation of the 5009XT controller, regular maintenance and upkeep work is required. Regularly check the appearance of the controller for damage or deformation, whether the interfaces are loose, and whether there is dust accumulation inside. For controllers with fan cooling, it is necessary to regularly clean the fan and cooling channels to ensure good cooling effect. Regularly upgrade the software of the controller to obtain the latest features and performance optimizations, while fixing possible software vulnerabilities. In addition, comprehensive inspections and maintenance of the steam turbine system, including sensors, actuators, steam pipelines, and other components, should be conducted regularly to ensure the normal operation of the entire system. Equipment operating in harsh environments, such as mining, metallurgy, and other industries, may require a shortened maintenance cycle to ensure its reliability.

  • ABB UAC389AE01 HIEE30088R0001 module controller
  • ABB AI02J high-performance I/O module
  • ABB IC698CPE030/IC698CPE020 series battery cover
  • ABB KSD211B 3BHE022455R1101 Input Coupling Unit ICU
  • ABB DSCA190V 57310001-PK Communication Processor
  • ABB GFD563A102 3BHE046836R0102 Analog I/O module
  • ABB XVC768115 3BHB007211R115 Industrial Control Module
  • ABB AI815 3BSE052604R1 I-O Module
  • ABB 5SGY3545L0010 3BHB006485R0001 Controller Module
  • ABB DAPI100 3AST000929R109 Ethernet Communication Interface Module
  • ABB SYN5201A-Z,V277 3BHB006714R0277 Auto single channel Syn
  • ABB KUC755AE117 3BHB005243R0117 System Controller
  • ABB CMA130 3DDE300410 Display Front Panel
  • ABB 07DC92D GJR525220R0101 Digital I/O Module
  • ABB PCD237A101 3BHE028915R0101 excitation control module
  • ABB CI627A 3BSE017457R1 Communication Interface
  • ABB 5SHY4045L0004 3BHB021400R0002 3BHE039203R0101 GVC736CE101 thyristor IGCT
  • ABB SYN5202A Controller Module
  • ABB LWN2660-6E 3BHL000986P7002 Power Conversion Module
  • ABB PFCA401SF 3BSE024387R4 Control Unit
  • ABB HIEE401807R0001 Advanced Power Electronics Module
  • ABB VBS01-EPD High Performance Digital Signal Processing Module
  • ABB LWN2660-6EG 3BHL000986P7002 Industrial Control Module
  • ABB SYN5201A-Z 3BHB006714R0217 Hydraulic Servo Module
  • ABB SYN5200a-Z,V217 SYNCHROTACT5 3BHB006713R0217 Dual channel synchronization device
  • ABB SAM3.0 Surge Arrester Monitoring System
  • ABB UNITROL 1005-0011 ECO 3BHE043576R0011 Automatic Voltage Regulator
  • ABB 3BHE032025R0101 PCD235B101 Exciter Control Module
  • ABB 3BHE006373R0101 XVC769AE101 INVERTER MODULE
  • ABB UFC765AE102 3BHE003604R0102 High-Performance PC Board
  • ABB 3BHE004573R0143 UFC760BE143 INTERFACE BOARD
  • ABB KUC720AE101 3BHB003431R0101 3BHB000652R0101 Controller Module
  • ABB HIEE300927R0101 UBC717AE101 High Voltage Inverter Board
  • ABB UFC721AE101 3BHB002916R0101 PC Board
  • ABB 5SHY4045L0003 3BHB021400 3BHE019719R0101 GVC736BE101 Diode and grid drive circuits
  • ABB 3BHE019719R0101 GVC736BE101 IGCT Module
  • ABB REM620A_F NAMBBABA33E5BNN1XF Protective Relay
  • ABB PPD113B03-26-100110 3BHE023584R2634 Power Distribution Module
  • ABB MB810 Module Mounting locations
  • ABB 3BHL000986P7000 LXN1604-6 POWER SUPPLY
  • ABB VBX01BA I/O Control Module
  • ABB AI03 AI module, 8-CH, 2-3-4 Wire RTDs
  • ABB 1TGE120010R1300 Industrial Control Module
  • ABB 216BM61b HESG448267R1021 Advanced Process Control Module
  • ABB BDD110 HNLP205879R1 Digital I/O Module
  • ABB IEMPU02 Power Supply Module
  • ABB G3FE HENF452697R1 High performance control module
  • ABB G3FD HENF452692R1 High-Performance Industrial Control Module
  • ABB B5EC HENF105077R1 Electronic Motor Protection Relay
  • ABB G3EFa HENF450295R2 Industrial Automation Module
  • ABB B5EEd HENF105082R4 Electronic Motor Protection Relay
  • ABB O3EId HENF452777R3 Digital Output Module
  • ABB NWX511a-2/R HESG112548R12 Industrial Automation Module
  • ABB E3ES Power communication module
  • ABB O3EX HENF315845R2 Industrial Control Module
  • ABB O3EHa HENF315087R2 Digital Output Module
  • ABB E3ED High-Performance Industrial Controller
  • ABB O3EGb HENF315118R2 Digital Output Module
  • ABB O3ED Digital Input Module
  • ABB O3ES HENF445789R1 Digital Input Module
  • ABB G3ESa HENF318736R1 control module
  • ABB 8025-235 Industrial Control Module
  • ABB 216NG61A HESG441633R1 HESG216875/K main control board
  • ABB SCYC51020 58052582G programmable Logic Controller
  • ABB RED670 Line differential protection
  • ABB PP825A 3BSE042240R3 Touch Screen Panel
  • ABB SCYC51020 58052582/G pulse trigger board
  • ALSTOM COP232.2 VME A32/D32.029.232 446 Controller Unit
  • ABB AO2000 LS25 Laser analyzers
  • ABB LM80 Laser level transmitter
  • ABB PM803F 3BDH000530R1 Base Unit 16 MB
  • ABB SD822 3BSC610038R1 Power Supply Device
  • ABB PCD235B1101 3BHE032025R1101 Industrial Control Module
  • ABB AZ20/112112221112E/STD Control Module
  • ABB UAD142A01 3BHE012551R0001 Industrial Control Module
  • ABB 5SHY35L4503 3BHB004693R0001 3BHB004692R0002 5SXE01-0127 main control board
  • ABB FET3251C0P184C0H2 High-Performance Power Module
  • ABB CAI04 Ability ™ Symphony ® Plus Hardware Selector
  • ABB R474A11XE HAFAABAAABE1BCA1XE output hybrid module
  • ABB REF542PLUS 1VCR007346 Compact Digital Bay Control
  • ABB REF542PLUS 1VCF752000 Feeder Terminal Panel
  • ABB PPD113B03-26-100100 3BHE023584R2625 output hybrid module
  • ABB 3BHE022293R0101 PCD232A Communication Interface Unit
  • ABB CI857K01 3BSE018144R1 Module Controller
  • ABB 3ASC25H216A DATX132 Industrial Controller
  • ABB LWN2660-6 High-Voltage Industrial Controller
  • ABB 1MRK00008-KB Control Module
  • ABB SC540 3BSE006096R1 Submodule Carrier
  • ABB REF615C_C HCFFAEAGANB2BAN1XC feeder protection and measurement and control device
  • ABB S-073N 3BHB009884R0021 multi-function servo driver
  • ABB SK827005 SK827100-AS 480V 60HZ coil
  • GE 029.381208 module
  • ABB REF615E_E HBFHAEAGNCA1BNN1XE Module
  • ABB TP830 3BSE018114R1 Baseplate Module
  • ABB TK803V018 3BSC950130R1 Cable Assembly
  • ABB DSRF197 3BSE019297R1 Controller Module
  • ABB DSAO120A 3BSE018293R1 Advanced Analog Output Board
  • ABB DSDP170 57160001-ADF Pulse Counting Module
  • ABB DSBC176 3BSE019216R1 Bus Extender Board
  • ABB DSDO115A 3BSE018298R1 Digital Output Module
  • ABB PM865K01 3BSE031151R1 Processor Unit HI
  • ABB 5SHY3545L0016 3BHB020720R0002 3BHE019719R0101 GVC736BE101 auxiliary DC power supply unit
  • ABB TP853 3BSE018126R1 Power Supply Module
  • ABB REM545AG228AAAA High Precision Control Module
  • ABB CI626A 3BSE005029R1 Communication Interface Module
  • ABB REM615C_D HCMJAEADAND2BNN1CD Motor protection and control
  • ABB TP857 3BSE030192R1 DCS System
  • ABB PP865A 3BSE042236R2 Touch Panel
  • ABB SCYC51020 58052582H Industrial Automation Control Module
  • ABB SCYC51090 58053899E Control Module
  • ABB CB801 3BSE042245R1 Profibus DP Slave Expansion Module
  • ABB 5SHY4045L0001 3BHB018162R0001 IGCT Module
  • ABB 5SHY6545L0001 AC10272001R0101 5SXE10-0181 High-Power IGCT Module
  • ABB RMU811 Module Termination Unit
  • ABB TVOC-2-240 1SFA664001R1001 Industrial Control Module
  • ABB LDSTA-01 63940143B Input/Output (I/O) Module
  • ABB GJR5252300R3101 07AC91H Analog Input/Output Module
  • ABB GJR5252300R3101 07AC91F Industrial Control Module
  • ABB TB711F 3BDH000365R0001 Industrial Control Module
  • ABB TU715F 3BDH000378R0001 I/O Terminal Unit (ITU)
  • ABB DC732F 3BDH000375R0001 Industrial Controller
  • ABB TTH300 Head-mount temperature transmitter
  • ABB UNS3670A-Z V2 HIEE205011R0002 Industrial Automation Module
  • ABB RC527 3BSE008154R1 Redundant System Control Module
  • ABB 5SHY5055L0002 3BHE019719R0101 GVC736BE101 Industrial Control Module
  • ABB PM866 3BSE050200R1 AC800M series PLC core controller
  • ABB UFC718AE01 HIEE300936R0001 Main Circuit Interface Board
  • ABB DSAI130A 3BSE018292R1 Industrial I/O Module Controller