Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

The automation revolution upstream of the life sciences

来源: | 作者:佚名 | 发布时间 :2023-12-07 | 168 次浏览: | Share:


First, the emergence of new scenes and old technologies

Through the statistics of the financing data in the past two years, we can intuitively understand that laboratory automation has become a "visible" outlet, behind the rise of demand in addition to investors in the field of innovative drugs and devices "stumble" after a rush to seek a way out of exploration. 36kr summed it up in the following six points:

① The epidemic is a very direct "catalyst". Not only routine clinical diagnosis requires more rapid and accurate test results, but also pays more attention to personnel safety. The high infectivity and pathogenicity of viruses have put forward the most direct demand for the automation of the whole process involving sample processing, inspection and testing, and sample storage. The automation demand in the field of life science has been verified again, and the rigid demand for the automation of relevant staff has become irreversible.

② With the rapid development of downstream applications in life sciences, the laboratory field is also facing great challenges, such as drug research and development and screening, gene sequencing and other popular technologies for massive real-time data and advanced technical methods to increase the demand.

At present, the domestic substitution window period of the life science support industry represented by laboratory instruments. Due to the characteristics of the industry, the customer stickness of the life science support industry is high, and local pharmaceutical companies have long relied on imported products - but the delivery time is often several months, some products are even out of stock, and the price reduction pressure brought by medical insurance negotiations and collection. In order to ensure the safety and stability of the supply chain and low cost, the domestic substitution of upstream products is an inevitable trend.

(4) Because this subdivision track is quite interdisciplinary and has a high threshold for entry, it can form a monopoly on technology or patents, and it can generate relatively stable cash flow at an early stage. At present, the awareness of risk aversion in the whole venture capital circle is enhanced and the desire for "revenue generating" is extremely strong, laboratory automation has become everyone's "heart".

In view of the fact that automation has been relatively mature in industrial, 3C and other fields, we are eager to find landing opportunities in new vertical fields, because the degree of automation is low and the industry ceiling and high added value, the life science field has become a new track that is jointly locked.

⑥ From an incremental point of view, in order to improve the rapid response ability to major epidemics, China has ushered in a boom in the construction of biosafety P2 and P3 laboratories, or will drive tens of thousands of large-scale laboratories to invest in the construction, for laboratory automation and intelligent manufacturers, which is also a huge business opportunity.

Driving force: Calculate the "economic account"

From the perspective of the environment, "before the money is very good to earn, now the money is not good to earn", enterprises in particular need to reduce expenses, a key measure is to carry out intelligent transformation, but the premise is to calculate the "economic account" : That is, after the downstream customers complete the automation transformation, the flux brought by the unit space and manpower expenditure is much higher than that of the traditional way, and there is still significant investment income after deducting the purchase income.

Approximate costing for traditional VS automated methods (36 kr drawing)

At present, laboratory automation is a "stock change + incremental rise" business. On the one hand, the form of automation is constantly upgrading and needs to be updated, and it is mainly used in drug research and development, clinical testing, genomics solutions and other fields - the market share of the above is only about 10%; On the other hand, some new scenarios are being mined and applied to form an incremental market involving life science research, molecular diagnostics, synthetic biology, cell culture, etc.

Therefore, at present, for the potential scale of laboratory automation, the market has no authority and unified calculation caliber. Based on interviews with investors and entrepreneurs, as well as backtracking on market demand, 36kr summarizes three main measurement methods, all pointing to the 100 billion market:

First of all, there are nearly 13,000 laboratories in China (including universities and research institutes, hospitals and third-party medical testing centers, new drug R&D enterprises, CRO companies, etc.), with a total cost of RMB 10 million per unit, or RMB 120 billion. In addition, the domestic laboratory analytical instruments market size of 70 billion, if the full range of automation transformation and upgrading, will also bring 10 billion market.

Secondly, the potential market space of China's life science research market is nearly 650 billion yuan. Referring to other mature industries, automation technology is expected to bring 20% incremental output value to the market through quality efficiency improvement, that is, 130 billion yuan; If coupled with the full replacement of the nearly 50 billion yuan market size of traditional human research services, this will be an unmet market with nearly 200 billion yuan of potential demand driven by downstream industrial applications.

Finally, because of the particularity of the laboratory automation industry, it will involve scientific instruments, reagent consumables, automation equipment, information software and other different formats in the process of commercial landing, and are in a stage of rapid growth, in total, the global market size of nearly 200 billion US dollars.

However, because the market is still in the early stage of development and lacks typical benchmarking cases, large-scale application is still out of the question. Therefore, some investors jokingly: "There is no point in talking about scale now, and it is practical to run several customers and open the market."

Evolution logic: The desire for a "black light lab"

Although it has been the attention of the venture capital circle that is used to "chasing the new", laboratory automation is not a new thing, and because of its rich connotation and diversity of scenes, a unified concept has not yet been formed.

In general, laboratory automation refers to the use of a variety of automatic testing instruments and computers and other means to achieve experiment and data processing, so as to reduce the manual operation of experimental personnel and improve work efficiency. The automatic nucleic acid detection equipment and automatic distribution system spawned by the epidemic are typical. Technology is advancing, functions are improving, application scenarios are expanding, and laboratory automation has become a dynamic concept that is iterating at any time.

Maggar technology drawing

Laboratory automation originated in the field of clinical testing and was proposed by Japan in 1981. In the 1990s, commercialized laboratory automation systems entered the labor-scarce markets of Japan, Europe and the United States, and cultivated several well-known brands in the industry since then, such as Hitachi, Beckman, Decon, etc. These brand equipment followed into the Chinese market and slowly rolled out, and local brands also rose later.

Behind the development of the industry is also accompanied by the mature evolution of the form of laboratory automation, which has brought about the improvement of detection flux, the extension of the scene, the gradual opening of the experimental closed loop, the improvement of flexibility and ease of use, and the gradual reduction of unit cost.

At present, according to the degree and scale of automation, laboratory automation can be roughly divided into four levels: single-module form automation, workstation form automation, assembly line form automation, and robot form intelligent. They are not purely full alternative evolution relationships, but rather match different product formats based on customer profiles for cost needs, throughput needs, research and clinical needs. From the functional point of view, laboratory automation as a whole is evolving from the direction of assisting people to replacing people.

In China, the degree of automation in most laboratories is still mainly in the form of single modules; Only some laboratories in the field of workstation form, the degree of integration is limited, the price in the domestic market is mostly at the level of millions of yuan, customers include pharmaceutical companies, CDC, third-party testing centers, etc., representative companies are Thermo Field, Beckman, Agilent, Deken, Hamilton, etc.

In addition, there are parts of the pipeline form automation (Total laboratory automation, referred to as TLA), which through the guide rail series adjacent functional areas, to achieve unified quality control of the whole system, can effectively reduce the human error and biological contamination rate in the experimental process, common in the laboratory - mainly biochemical immunity, The representative enterprises are Beckman, Roche, Siemens, etc., and the local manufacturers Antu biological and the above companies are fighting seriously.

Robot form intelligence is still in the early stage of development in China, has not formed large-scale application, and there is not much gap at home and abroad.

Eventually, everyone's vision points to an unattended "black light lab," in which researchers use the platform to program their ideas, and the system can be efficiently completed. However, this often needs to meet the following requirements: the introduction of advanced technologies such as manipulators, machine vision, and AI decision models; Minimal transformation of laboratory and key inspection equipment to achieve system cascade and closed-loop opening; Instead of manual completion of repetitive work or human can not reach, process result reading and judgment, automatic trial and error and final result screening output.

At present, Eli Lilly Pharmaceutical, InSI intelligence are trying in this regard. It is reported that Lilly has invested more than $300 million in the use of robotic cloud platforms to improve biological capabilities and automate chemical synthesis cycles; Insili is spending tens of millions of dollars to apply its proven AI platform to robotic lab scenarios, further enhancing its ability to automate drug discovery through a combination of "brain (AI)" + "hand (robot)."

Magnesium laboratory automation system

At this stage, most startups are making efforts in the direction of intelligent robot form, typical such as magnesium technology, Huixiang technology, etc. Most players in the industry have not generally reached the stage of large-scale mass production; Another category is the development of automated applications in certain niche scenarios, such as BDA Intelligent manufacturing (molecular diagnostics), BDA Biological (biological cryopreservation), Innoville (cell culture), and Chengyuan Technology (synthetic biology); Some of them are TLA's domestic alternative or fully open TLA systems, such as Antu Bio, Mindray Medical, Mike Bio, or Sanomide, Ritech and so on; There is also a class of automation software applications, such as Bright Wisdom, Zebrafish, which mainly addresses the need for paperless laboratory scenarios, and ultimately to ensure compliance and data security.

Among them, the first category carries the expectation of unmanned intelligent laboratories - most of which are still in the early stages of exploration. As mentioned above, the demand has reached an unprecedented stage, coupled with the extensive exploration of the third generation automation technology based on "AI+ robot", combined with equipment, LAS and LIS/LIMS, life science laboratory automation has become another arena for everyone to fight technology, fight scenarios, and finally scale.

The second type of development is mainly based on the rapid development of downstream industries. Take molecular diagnostics as an example, it is currently the most technically demanding, fastest growing and most challenging branch in the field of in vitro diagnostics, but because of the advantages of high throughput, high sensitivity and relatively low unit cost, with the development of PCR, NGS and other technologies, its application range has been rapidly expanded, putting higher requirements on upstream services.

The third category takes advantage of the development of the county medical market and the normalization of nucleic acid testing. The outbreak and continuation of the novel coronavirus epidemic, heavy testing work and time-consuming testing time, the presence of false Yang (Yin) and possible infectivity in the laboratory, make the automation of testing laboratories gradually become the industry's buzzword; In addition, the contradiction between the growth of the primary medical inspection market and the mismatch of manpower supply brought about by the centralization of county medical care has further promoted the development of the industry.

According to the director of a regional laboratory of Golden Field Medical Inspection Group, there are currently 1,500 medical inspection laboratory automation lines in the country, the overall market capacity of about 7,000, and now the annual growth rate of more than 300 installed machines, coupled with the general price sensitivity of grassroots service providers, which gives local manufacturers greater opportunities.


  • GE HYDRAN 201Ti Single Channel Gas Monitoring Transmitter
  • GE Hydran M2-X Transformer Online Monitoring Equipment
  • GE Hydran M2 Transformer Monitoring System
  • Kollmorgen Seidel 65WKS-CE310/6PB - Servo Drive Control
  • Kollmorgen U9M4T - Servodisc DC Motor, With Harmonic Drive Transmission
  • KOLLMORGEN TT-2952-1010-B - INLAND BRUSH SERVO MOTOR WITH TACH
  • ONE VF-RA2474N-5/10/12/15 - Servo Drive Power Cable
  • Kollmorgen S30601-NA - Servostar 346 + EtherCat
  • Kollmorgen HDIL100P1 - Direct Drive Linear Hall Effect Assembly
  • Kollmorgen TT-4239-1010-AA - DC Servo Motor 875 RPM
  • PMI Kollmorgen 00-00907-999 - ServoDisc DC Motor 0.5" Diameter Shaft
  • INLAND KOLLMORGEN TT-2952-1010-B - MOTOR (USES RESOLVER)
  • KOLLMORGEN CTI-187-2 - BRUSHLESS MOTOR DANAHER MOTION
  • Kollmorgen 12-0857 - Lead Screw Electric Cylinder without Motor
  • Kollmorgen AKM13C-ANCNR-00 - Servo Motor
  • kollmorgen 6sm, 10m - Cable
  • KOLLMORGEN ME2-207-C-94-250 - GOLDLINE SERVOMOTOR-ENCODER COMMUTATED
  • Kollmorgen MT308A1-R1C1 - GoldLine Motor
  • Kollmorgen 73 & 54 cm Travel - Ironless Linear Motors on THK Rail
  • Kollmorgen AKM53H-ACCNR-00 - Servo Motor
  • Kollmorgen PA5000 - Power Supply
  • KOLLMORGEN D082M-12-1310 - GOLDLINE DDR DIRECT DRIVE ROTARY MOTOR 230Vrms 300 RPM
  • Kollmorgen RBEH-01210-A14 - Brushless Motor, Heidenhain D-83301
  • KOLLMORGEN Servotronix PRD-CC18551H-11 - Servo Board
  • Kollmorgen DH083M-13-1310 - Ho Direct Drive Rotary. Max Speed: 400/500 RPM
  • KOLLMORGEN BMHR-4.8XX - INLAND MOTOR
  • Kollmorgen Seidel 84421 - Motor Cable 20 Metre 6SM 27/37 AKM DBL Engines
  • Kollmorgen AKD1207-NBCC-0000 - Drive
  • HP Indigo / Kollmorgen VLM32H-ALNR-00 - Motor
  • SUPERIOR ELECTRIC / KOLLMORGEN GM05009005 - POWERSTAT 50 AMP VARIAC w/ PMI MOTOR
  • Kollmorgen CM12A1-015-033-00 - MOTOR CABLE for AKD B/P/T/M Motor AKM 1-7 Cable
  • Kollmorgen U9M2 - DC Motor
  • Kollmorgen AKM11C-ANMN2-00 - 3-Phase PM Servo Motor 110W
  • Kollmorgen 60-023168-000 - MOTOR GEARBOX ASSEMBLY SERVODISC DC NO REAR SHAFT
  • Kollmorgen AS10300 - servo drive servo star Cincinnati
  • Kollmorgen AKM23D-EFC2C-00 - Servo Motor AKD Drive
  • KOLLMORGEN E33HRFB-LNK-NS-01 - STEPPER MOTOR 2.7AMP 251W 1500RPM 170V
  • Kollmorgen AKM21G-ENM2DB00 - Servomotor
  • KOLLMORGEN SERVO STAR 620-AS - 230-480V 20A Servo Drive
  • Kollmorgen CFE0A1-002-006-00 - Encoder Cable 6.00m
  • KOLLMORGEN AKM21C-ANM2DBOO - PM SERVOMOTOR
  • Kollmorgen 03200-2G205A - ServoStar Servo Drive
  • Kollmorgen CR10251 - SERVOSTAR CD AC Servo Driver
  • Kollmorgen VF-DA0474N-03-0 - 10 Ft Feedback Cable
  • KOLLMORGEN AKM21S-ANMNR-03 - Servo Motor
  • Danaher Motion Kollmorgen S403AM-SE - Servostar 443M-S Servo Drive
  • Kollmorgen Seidel digifas 7204 - Servo Amplifier Digital
  • Kollmorgen Industrial Drive B-406-B-A1-B3 - Goldline Brushless Servomotor
  • Danaher Motion S20630-CNS - Servo Kollmorgen S200 Series
  • KOLLMORGEN B-206-A-31-B3 - GOLDLINE BRUSHLESS PM SERVO MOTOR 1400RPM
  • Kollmorgen Seidel SR6-6SMx7 - 4m Cable
  • Cincinnati Milacron Kollmorgen Vickers PSR4/5-250-7500 - Power Supply
  • Kollmorgen AKM 13C-ANCNR-00 - Gripper Handling with Neugart PLE 40 gears
  • Kollmorgen SERVOSTAR 403 A-P - 3a servo drive
  • KOLLMORGEN S6M4H - INDEXER ASSY SERVO MOTOR
  • SERVOMOTOR KOLLMORGEN SEIDEL 6SM 57M-3.000-G-09 - Servo Motor
  • Kollmorgen VP-507BEAN-03 - Valueline AKD 10 Ft Power Cable
  • KOLLMORGEN 28454 - SERVO DRIVE, SERVOSTAR 300 SERVOSTAR 310
  • KOLLMORGEN TT-4205-4017-C - INDUSTRIAL DRIVE DC MOTOR
  • Kollmorgen T150551 - Servostar 343 Control Drive
  • Kollmorgen ICD05030A1C1 - Platinum DDL Direct Drive Linear Motor w/ 30" Rail Way
  • Kollmorgen SERVOSTAR 303 S30361-SE - Servo Drive
  • Kollmorgen 00-00907-002 - ServoDisc DC Motor Varian Semiconductor 3500054
  • Kollmorgen CM12A1-025-005-00 - MOTOR CABLE for AKD B/P/T/M Motor AKM 1-7 Cable
  • KOLLMORGEN MOTION TECH IL18100A3TRC1 - BRUSHLESS LINEAR MOTOR PLATINUM DDL
  • Kollmorgen SERVOSTAR 406 M-C - Servo Drive FW: 7.36
  • Kollmorgen IC11030A1P1103 - platinum direct drive linear motor
  • W&T 10/100BaseT - Com Server Highspeed 3×RS232/RS422/RS485
  • Kollmorgen S30361-NA - drive brand
  • Kollmorgen Industrial Drives PSR3-208/50-01-003 - Power Supply
  • Kollmorgen RBE-03011-A00 - Brushless Frameless Servo Motor, OD: 5-5/64"/129mm
  • Industrial Drives SBD2-20-1101-5301C2/160-20 - Servo Amplifier Board For Parts
  • Industrial Drives SBD2-20-1101-5301C2/160-20 - Servo Amplifier Board For Parts
  • Industrial Drives SBD2-20-1101-5301C2/160-20 - Servo Amplifier Board For Parts
  • Kollmorgen IC44030A2P1 - LINEAR DRIVE MOTOR
  • KOLLMORGEN AKM22E-ANS2R-02 - servo motor + Micron X-TRUE 60
  • Kollmorgen 18442-01B - Pendant (E2)
  • Kollmorgen AKD-P00306-NBEC-0069 - Drive
  • Kollmorgen AKM53H-ACCNR-00 - Servomoteur
  • Kollmorgen AKD-P01207-NACN-0056 - Servo Drive
  • Kollmorgen SERVOSTAR 403a-c - Servo Drive
  • Kollmorgen B-204-B-39-016 - Servo Motor
  • Giddings & Lewis Dahaner Motion Kollmorgen M.1017.3140 R3 - Output Module
  • Kollmorgen KNSG300 - Emergency Light Unit
  • KOLLMORGEN 62-0050 Model T31V-EM-C0 - Servo Motor Shaft Size 3/8" Dia 1-1/4" Long
  • Kollmorgen S30601-NA-ARM9 - SERVOSTAR346 Controller w/o Fan As Is
  • Kollmorgen PMI Motors 00-00903-010 - ServoDisc DC Motor Type U9M4H 1/2" shafts
  • Kollmorgen PMI Motion U12M4 - Servo Disc DC Motor Universal Instruments 11467000
  • Kollmorgen AKM53H-accnr-00 - Servo Motor
  • DANAGER MOTION / KOLLMORGEN ACD4805-W4 - (70A ) Vehicle / Motor Controller
  • Kollmorgen s60300 - SERVOSTAR 603 3 x 230-480v 2kva
  • KOLLMORGEN B-404-C-21 - GOLDLINE BRUSHLESS P.M. SERVOMOTOR
  • Kollmorgen T-5144-A - GE Aviation 739034-01 Direct Drive DC Torque Motor
  • KOLLMORGEN M.1302.8761 - CABLE, POWER
  • Kollmorgen CE03250 - Servostar Servo Drive
  • Kollmorgen K-342 - dual axis automatic autocollimator
  • Kollmorgen TT-4500-1010-B - Inland Motor
  • Kollmorgen S20260-Srs - Synqnets200 Series Servo Drive Forparts
  • Kollmorgen PRDRHP720SND-65 - drive CR06703-R
  • KOLLMORGEN S70362-NANANA - driver
  • Kollmorgen CR06260-000000 - SERVOSTAR CD AC Servo Driver
  • KollMorgen akd-m00306-mcec-D000 - Multi-Axis Master Programmable Drive AKD PDMM
  • KOLLMORGEN S61000 - SERVOSTAR 610 3X230-480V 10A
  • Kollmorgen AKD-P00306-NBCC-0000 - AKD Servo Drive
  • KOLLMORGEN CP306250 - SERVOSTAR SP Servo Drive
  • Kollmorgen MPK411 - controller
  • Kollmorgen S64001 - SERVOSTAR 640, factory-certified
  • Kollmorgen Servotronix Prdr0087006Z-00 - Lvd Servo Drive
  • Kollmorgen AKD-P00306-NAAN-0000 - Servo Drive Controller, 1.2KVA, 240Vac, 3 Phase
  • Kollmorgen MCSS08-3232-001 - MCSS06-3224-001 ServoStar Drives (AS-IS)
  • Kollmorgen CR06250-2D063A - drive
  • YASKAWA SGDP-04APA - SERVOPACK SERVO DRIVE
  • Kollmorgen s62001 - servostar 620-as 14kva 20a ip2o 3x 230-480v
  • Kollmorgen Seidel S60100 - Servostar 601 Servo Drive
  • KOLLMORGEN CR06703-R - HP SERVOSTAR CD CONTROLLER
  • kollmorgen Prdr0052200z-05 - graco inter Servo Component
  • KOLLMORGEN S403AM-SE - drive SERVOSTAR 443M-S
  • YASKAWA SGDP-01APA - SERVOPACK SERVO DRIVE
  • Kollmorgen CE06200-1H348H - SERVOSTAR CD Servo Driver
  • Kollmorgen S71262-NANANA - S700 Servo Amplifier 208Y/120V 480Y/277V
  • Kollmorgen S70302-NANANA-NA - S700 Servo Driver
  • KOLLMORGEN S61401-560 - ATS-SERVOSTAR 614-AS Servo Drive
  • KOLLMORGEN Industrial Drives BDS4A-103J-0001/102A21P - Servo Controller
  • Kollmorgen S71202-NANANA-NA-024 - S700 Servo Driver
  • KOLLMORGEN S70302-NANANA - driver
  • Kollmorgen CR06250 - SERVOSTAR Servo Drive
  • Kollmorgen CE03550 - drive
  • Kollmorgen S71202-NANANA - S700 Servo Driver