Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Basic textile knowledge

来源: | 作者:佚名 | 发布时间 :2023-12-08 | 219 次浏览: | Share:


1. Fiber: natural or synthetic elongated material with a length much larger than its diameter and a certain degree of flexibility.

(2) textile fiber (textile+fibre) : with a certain length, densification and toughness fineness is very fine (diameter is generally a few microns to tens of microns), the length is one hundred times larger than the diameter, or even more than a thousand times and has a certain processing performance and use performance of slender substances called textile fibers.

1) Linear density and length of fibers

The linear density of the fiber refers to the thickness of the fiber, and the length of the fiber refers to the length of the fiber. Textile fibers have a certain linear density and length, in order to make the fibers embrace each other, which is one of the necessary conditions for textile processing and make the product have use value. The fabric made of finer fibers is softer, the luster is softer, and can be made into a relatively thin fabric, and can also be made of clothing fabrics with good air permeability and good imitation silk effect. But the fabric made of fine fiber is easy to fuzz and pilling. Coarse fiber fabrics can be manufactured as stiff, rugged and thick fabrics.

Similarly, the length of textile fibers is also closely related to textile and product quality. Long fiber length, good length uniformity and less short fiber content are beneficial to textile processing and product quality. Under the same conditions, if the fiber is longer, the yarn strength is high, the dry strip is uniform, the yarn surface is smooth, the fabric made is good fastness, the appearance is smooth, and it is not easy to fuzz and pilling. In addition, under the premise of ensuring a certain quality of yarn, the longer the fiber, the finer the yarn can be spun, which can be used to make a lighter fabric.

In textile fibers, the linear density and length of natural fibers are uneven, and sometimes the difference is larger, which varies with the fiber varieties, growth conditions and so on. The chemical fiber is artificially manufactured, and the linear density and length of the fiber can be controlled and determined within a certain range according to the requirements of fiber processing and use.

2) Chemical resistance of fiber

It refers to the resistance of fibers to the destruction of various chemical substances. Fiber in textile dyeing and finishing processing, will be different degrees of contact with water, acid, alkali, salt and other chemical substances, so as a textile fiber must have a certain chemical resistance. Correct understanding of the chemical resistance of various textile fibers, reasonable selection of appropriate processing conditions, in order to correctly use a variety of fiber products.

Among all kinds of textile fibers, cellulose fibers have strong resistance to alkali and weak resistance to acid. The chemical resistance of protein fiber is different from that of cellulose fiber, and its resistance to acid is stronger than that of alkali, and protein fiber will be damaged to varying degrees in strong alkali or weak alkali, and even lead to decomposition. The chemical resistance of synthetic fibers is stronger than that of natural fibers, such as the acid and alkali resistance of polypropylene and chlorinated fiber.

3) Mechanical properties of textile fibers

It refers to the performance of textile fiber deformation under the action of various external forces. External forces include stretching, compression, bending, torsion, friction and other forms. The mechanical properties of textile fibers should include fiber strength, elongation, elasticity, wear resistance, elastic modulus, etc.

A fiber strength: The strength of the fiber refers to the ability of the fiber to resist external damage, which largely determines the durability of textile goods. The strength of the fiber can be expressed by the absolute strength of the fiber, which refers to the maximum load that the fiber can withstand under the action of continuous increasing load until it breaks. Its legal unit is Newton (N) or centinewton (cN). It used to be expressed in grams or kilograms. Since the strength of the fiber is related to the thickness of the fiber, the absolute strength is not comparable for fibers of different thickness, so the relative strength is commonly used to represent the strength of the fiber. Relative strength refers to the maximum tensile force that the fiber can withstand per unit linear density (per tert or per denier). The legal unit of measurement is Niu/T (N/tex) or Li Niu /t (cN/tex). It used to be expressed in gram/denier.

B fiber elasticity: fiber and its products in processing and use, are subject to external force, and produce the corresponding deformation. When the action of external force is removed, part of the deformation of the fiber can be restored, while the other part of the deformation will not be restored. According to this characteristic of the fiber, the deformation of the fiber can be divided into three parts, that is, when the external force can be immediately restored after the deformation of this part is called rapid elastic deformation; When the external force is removed, this part of the deformation that can slowly recover is called slow elastic deformation; When the external force is removed, this part of the deformation that cannot be restored is called plastic deformation. The elasticity of fiber refers to the resilience of fiber deformation. The commonly used index to indicate the elastic size of the fiber is the elastic recovery rate or resilience rate of the fiber. It refers to the percentage of rapid elastic deformation and slow elastic deformation of a certain time in the total deformation. If the elastic recovery rate of fiber is high, the elasticity of fiber is good and the ability of deformation recovery is strong. Textiles made of elastic fibers have good dimensional stability, are not easy to wrinkle during use, and are more wear-resistant. For example, polyester has excellent elasticity, and the clothing made of it has the characteristics of crisp and wear-resistant.

C fiber wear resistance: fiber and its products in the process of processing and actual use, the performance of external wear. The wear resistance of fiber is closely related to the fastness of textile products. Wear resistance is an important index of wear performance of clothing fabric. The wear resistance of fiber is related to the macromolecular structure, supramolecular structure, elongation at break and elasticity of fiber. The order of the wear resistance of common fibers is as follows: + polyamide > polypropylene > Vinylon > ethylene > Polyester > Acrylic > Chlorine > Wool > silk > Cotton > hemp > rich fiber > copper ammonia fiber > viscose fiber > acetate fiber > Glass fiber.

D hygroscopic properties: Textile fibers placed in the air, will continue to exchange water vapor with the air, textile fibers in the absorption or release of water vapor performance called fiber hygroscopic. The hygroscopicity of textile fiber is one of the important physical properties of textile fiber. The size of textile fiber hygroscopicity has a certain impact on the shape size, weight, physical and mechanical properties of textile fiber, which also affects its processing and use performance. The moisture absorption capacity of textile fiber also directly affects the wearing comfort of the fabric. The fiber with large moisture absorption capacity is easy to absorb the sweat discharged by the human body, regulate the body temperature, and relieve the sense of dampness, thus making people feel comfortable.

In the common textile fibers, wool, hemp, viscotic fiber, silk, cotton and other moisture absorption ability is strong, synthetic fiber moisture absorption ability is generally poor, of which vinylon and nylon moisture absorption ability is slightly better, acrylic fiber is worse, polyester is worse, polypropylene and chlorine fiber is almost no moisture absorption. At present, synthetic fibers with poor hygroscopic ability are often blended with natural fibers or viscose fibers with strong hygroscopic ability to improve the hygroscopic ability of fabrics.

In the hygroscopic properties of fibers, in addition to hygroscopic properties, the water absorption of fiber materials is also closely related to the wearing comfort of fabrics. The water absorption of fiber refers to the fiber's ability to absorb liquid water. The water vapor and sweat generated by people during activities mainly rely on the moisture absorption and water absorption properties of the fabric to absorb and radiate outwardly, so that people feel comfortable. Generally speaking, the coat is mainly soaked by rain, so the fiber with small water absorption can be selected as the coat material; Underwear is mainly soaked by the body's inexplicit evaporation and sweating, so it is necessary to choose fiber with large moisture absorption and water absorption as underwear materials.

3. There are many types of textile fibers, which are traditionally divided into natural fibers and chemical fibers according to their sources.

Natural fibre

Chemical fibre

Natural fiber is derived from natural or artificially cultivated plants, artificially raised animals directly obtained for textile fibers, is an important source of materials in the textile industry. The production of natural fibers worldwide is large and increasing, and is an important source of materials for the textile industry. Despite the rapid growth of synthetic fiber production since the middle of the 20th century, natural fibers still account for a large proportion of the total annual output of textile fibers.

Natural fiber can be divided into "plant fiber", "animal fiber" and "mineral fiber" according to the source.

The chemical composition of "plant fiber" is mainly cellulose, also known as natural cellulose fiber. It is the fiber obtained from seeds, fruits, stems, leaves, etc., on plants. According to the different parts of the plant, it is divided into seed fiber, bast fiber, leaf fiber and fruit fiber.

The chemical composition of "animal fiber" is mainly protein, so it is also called natural protein fiber, which is divided into two categories of hair and glandular secretions. Among them, wool, cashmere, rabbit hair, mohair, camel hair, camel hair, yak hair, alpaca hair and vicuna hair are hair animal fibers, and mulberry silk and tussah silk are glandular secretions animal fibers.

"Mineral fiber" is mainly asbestos, and its composition is mainly inorganic silicates. It is an important building material and can also be used for textile applications.

Chemical fiber is a kind of fiber with textile properties, which is made from natural polymer or synthetic polymer, through preparation of spinning stock, spinning and post-treatment. Chemical fibers can be divided into "recycled fibers" (man-made fibers), "synthetic fibers" and "inorganic fibers" according to the source of polymers.

"Recycled fiber" The production of recycled fiber is inspired by the silk spinning of silkworms, using natural polymer compounds such as cellulose and protein as raw materials, through chemical processing to make polymer concentrated solution, and then spinning and post-processing to make textile fibers. Natural polymers (such as wood, cotton, soybean, etc.) as raw materials, by spinning processing made of fiber. Also known as artificial fiber. Viscose fiber, rich fiber, copper ammonia fiber and Leosse fiber are all regenerated cellulose fibers. Soybean fiber, milk fiber and corn fiber are all regenerated protein fiber.

"Synthetic fiber" with oil, coal and natural gas and other materials in small molecules as raw materials, synthetic polymer compounds, and then spun fibers made. Polyester fiber (polyester), polyamide fiber (nylon, nylon), polyacrylonitrile fiber (acrylic), polypropylene fiber (polypropylene), polyurethane fiber (spandex) and polyvinyl alcohol fiber (Vinylon) are commonly used synthetic fibers. The Chinese name of the synthetic fiber scientific name has a "poly" word, and the last word of the synthetic fiber trade name is "LON". Except for acrylic fiber, the English name of synthetic fiber contains the same prefix "poly-".

"Inorganic fiber" Inorganic fiber is made of natural inorganic substances or carbon-containing polymer fibers as raw materials, by artificial drawing or direct carbonization. Including glass fiber, metal fiber and carbon fiber.

4. Differences, similarities and differences in structure and properties of natural fibers, recycled fibers and synthetic fibers

Natural fibers: Natural fibers are derived from plants, animals, and minerals. The main component of plant fiber is cellulose, and contains a small amount of lignin, hemicellulose and so on. The main component of animal fiber is protein, but the chemical composition of protein is very different. Mineral fiber SiO2+, Al2O3, Fe2O3, MgO.

Recycled fiber: natural high polymer as raw materials made of slurry, its chemical composition is basically unchanged and high purity after purification of fiber

Synthetic fiber: oil, coal, natural gas and some agricultural and sideline products as raw materials made of monomer, chemical synthesis into polymers, spun fibers

5. How to distinguish in naming

Natural fibers: Named directly according to the source of the fiber.

Silk fiber: According to "plant name + silk" composition.

Recycled fiber: "raw material name + pulp + fiber "+ or +" raw material name + adhesive ".

Synthetic fiber: based on chemical composition, and form a scientific name and abbreviation code, supplemented by a commercial name, form a trade name or common name.

6. Identification of fibers

① Identification methods include hand feel, visual method, combustion method, microscope method, dissolution method, drug coloring method and infrared spectroscopy. In the actual identification, often need to use a variety of methods, comprehensive analysis and research after the result.

② The general identification steps are as follows:

A. First use combustion method to identify natural fibers and chemical fibers.

B. If it is a natural fiber, use a microscope to identify all types of plant fiber and animal fiber. If it is a chemical fiber, it is distinguished one by one by combining the differences in melting point, specific gravity, refractive index, and solubility of the fiber. 

C. In the identification of mixed fibers and blended yarn, it is generally possible to confirm that several fibers are contained in the microscope, and then identify one by one with the appropriate method.

For dyed or finished fibers, it is generally necessary to carry out dyeing stripping or other appropriate pretreatment to ensure reliable identification results.


  • GE HYDRAN 201Ti Single Channel Gas Monitoring Transmitter
  • GE Hydran M2-X Transformer Online Monitoring Equipment
  • GE Hydran M2 Transformer Monitoring System
  • Kollmorgen Seidel 65WKS-CE310/6PB - Servo Drive Control
  • Kollmorgen U9M4T - Servodisc DC Motor, With Harmonic Drive Transmission
  • KOLLMORGEN TT-2952-1010-B - INLAND BRUSH SERVO MOTOR WITH TACH
  • ONE VF-RA2474N-5/10/12/15 - Servo Drive Power Cable
  • Kollmorgen S30601-NA - Servostar 346 + EtherCat
  • Kollmorgen HDIL100P1 - Direct Drive Linear Hall Effect Assembly
  • Kollmorgen TT-4239-1010-AA - DC Servo Motor 875 RPM
  • PMI Kollmorgen 00-00907-999 - ServoDisc DC Motor 0.5" Diameter Shaft
  • INLAND KOLLMORGEN TT-2952-1010-B - MOTOR (USES RESOLVER)
  • KOLLMORGEN CTI-187-2 - BRUSHLESS MOTOR DANAHER MOTION
  • Kollmorgen 12-0857 - Lead Screw Electric Cylinder without Motor
  • Kollmorgen AKM13C-ANCNR-00 - Servo Motor
  • kollmorgen 6sm, 10m - Cable
  • KOLLMORGEN ME2-207-C-94-250 - GOLDLINE SERVOMOTOR-ENCODER COMMUTATED
  • Kollmorgen MT308A1-R1C1 - GoldLine Motor
  • Kollmorgen 73 & 54 cm Travel - Ironless Linear Motors on THK Rail
  • Kollmorgen AKM53H-ACCNR-00 - Servo Motor
  • Kollmorgen PA5000 - Power Supply
  • KOLLMORGEN D082M-12-1310 - GOLDLINE DDR DIRECT DRIVE ROTARY MOTOR 230Vrms 300 RPM
  • Kollmorgen RBEH-01210-A14 - Brushless Motor, Heidenhain D-83301
  • KOLLMORGEN Servotronix PRD-CC18551H-11 - Servo Board
  • Kollmorgen DH083M-13-1310 - Ho Direct Drive Rotary. Max Speed: 400/500 RPM
  • KOLLMORGEN BMHR-4.8XX - INLAND MOTOR
  • Kollmorgen Seidel 84421 - Motor Cable 20 Metre 6SM 27/37 AKM DBL Engines
  • Kollmorgen AKD1207-NBCC-0000 - Drive
  • HP Indigo / Kollmorgen VLM32H-ALNR-00 - Motor
  • SUPERIOR ELECTRIC / KOLLMORGEN GM05009005 - POWERSTAT 50 AMP VARIAC w/ PMI MOTOR
  • Kollmorgen CM12A1-015-033-00 - MOTOR CABLE for AKD B/P/T/M Motor AKM 1-7 Cable
  • Kollmorgen U9M2 - DC Motor
  • Kollmorgen AKM11C-ANMN2-00 - 3-Phase PM Servo Motor 110W
  • Kollmorgen 60-023168-000 - MOTOR GEARBOX ASSEMBLY SERVODISC DC NO REAR SHAFT
  • Kollmorgen AS10300 - servo drive servo star Cincinnati
  • Kollmorgen AKM23D-EFC2C-00 - Servo Motor AKD Drive
  • KOLLMORGEN E33HRFB-LNK-NS-01 - STEPPER MOTOR 2.7AMP 251W 1500RPM 170V
  • Kollmorgen AKM21G-ENM2DB00 - Servomotor
  • KOLLMORGEN SERVO STAR 620-AS - 230-480V 20A Servo Drive
  • Kollmorgen CFE0A1-002-006-00 - Encoder Cable 6.00m
  • KOLLMORGEN AKM21C-ANM2DBOO - PM SERVOMOTOR
  • Kollmorgen 03200-2G205A - ServoStar Servo Drive
  • Kollmorgen CR10251 - SERVOSTAR CD AC Servo Driver
  • Kollmorgen VF-DA0474N-03-0 - 10 Ft Feedback Cable
  • KOLLMORGEN AKM21S-ANMNR-03 - Servo Motor
  • Danaher Motion Kollmorgen S403AM-SE - Servostar 443M-S Servo Drive
  • Kollmorgen Seidel digifas 7204 - Servo Amplifier Digital
  • Kollmorgen Industrial Drive B-406-B-A1-B3 - Goldline Brushless Servomotor
  • Danaher Motion S20630-CNS - Servo Kollmorgen S200 Series
  • KOLLMORGEN B-206-A-31-B3 - GOLDLINE BRUSHLESS PM SERVO MOTOR 1400RPM
  • Kollmorgen Seidel SR6-6SMx7 - 4m Cable
  • Cincinnati Milacron Kollmorgen Vickers PSR4/5-250-7500 - Power Supply
  • Kollmorgen AKM 13C-ANCNR-00 - Gripper Handling with Neugart PLE 40 gears
  • Kollmorgen SERVOSTAR 403 A-P - 3a servo drive
  • KOLLMORGEN S6M4H - INDEXER ASSY SERVO MOTOR
  • SERVOMOTOR KOLLMORGEN SEIDEL 6SM 57M-3.000-G-09 - Servo Motor
  • Kollmorgen VP-507BEAN-03 - Valueline AKD 10 Ft Power Cable
  • KOLLMORGEN 28454 - SERVO DRIVE, SERVOSTAR 300 SERVOSTAR 310
  • KOLLMORGEN TT-4205-4017-C - INDUSTRIAL DRIVE DC MOTOR
  • Kollmorgen T150551 - Servostar 343 Control Drive
  • Kollmorgen ICD05030A1C1 - Platinum DDL Direct Drive Linear Motor w/ 30" Rail Way
  • Kollmorgen SERVOSTAR 303 S30361-SE - Servo Drive
  • Kollmorgen 00-00907-002 - ServoDisc DC Motor Varian Semiconductor 3500054
  • Kollmorgen CM12A1-025-005-00 - MOTOR CABLE for AKD B/P/T/M Motor AKM 1-7 Cable
  • KOLLMORGEN MOTION TECH IL18100A3TRC1 - BRUSHLESS LINEAR MOTOR PLATINUM DDL
  • Kollmorgen SERVOSTAR 406 M-C - Servo Drive FW: 7.36
  • Kollmorgen IC11030A1P1103 - platinum direct drive linear motor
  • W&T 10/100BaseT - Com Server Highspeed 3×RS232/RS422/RS485
  • Kollmorgen S30361-NA - drive brand
  • Kollmorgen Industrial Drives PSR3-208/50-01-003 - Power Supply
  • Kollmorgen RBE-03011-A00 - Brushless Frameless Servo Motor, OD: 5-5/64"/129mm
  • Industrial Drives SBD2-20-1101-5301C2/160-20 - Servo Amplifier Board For Parts
  • Industrial Drives SBD2-20-1101-5301C2/160-20 - Servo Amplifier Board For Parts
  • Industrial Drives SBD2-20-1101-5301C2/160-20 - Servo Amplifier Board For Parts
  • Kollmorgen IC44030A2P1 - LINEAR DRIVE MOTOR
  • KOLLMORGEN AKM22E-ANS2R-02 - servo motor + Micron X-TRUE 60
  • Kollmorgen 18442-01B - Pendant (E2)
  • Kollmorgen AKD-P00306-NBEC-0069 - Drive
  • Kollmorgen AKM53H-ACCNR-00 - Servomoteur
  • Kollmorgen AKD-P01207-NACN-0056 - Servo Drive
  • Kollmorgen SERVOSTAR 403a-c - Servo Drive
  • Kollmorgen B-204-B-39-016 - Servo Motor
  • Giddings & Lewis Dahaner Motion Kollmorgen M.1017.3140 R3 - Output Module
  • Kollmorgen KNSG300 - Emergency Light Unit
  • KOLLMORGEN 62-0050 Model T31V-EM-C0 - Servo Motor Shaft Size 3/8" Dia 1-1/4" Long
  • Kollmorgen S30601-NA-ARM9 - SERVOSTAR346 Controller w/o Fan As Is
  • Kollmorgen PMI Motors 00-00903-010 - ServoDisc DC Motor Type U9M4H 1/2" shafts
  • Kollmorgen PMI Motion U12M4 - Servo Disc DC Motor Universal Instruments 11467000
  • Kollmorgen AKM53H-accnr-00 - Servo Motor
  • DANAGER MOTION / KOLLMORGEN ACD4805-W4 - (70A ) Vehicle / Motor Controller
  • Kollmorgen s60300 - SERVOSTAR 603 3 x 230-480v 2kva
  • KOLLMORGEN B-404-C-21 - GOLDLINE BRUSHLESS P.M. SERVOMOTOR
  • Kollmorgen T-5144-A - GE Aviation 739034-01 Direct Drive DC Torque Motor
  • KOLLMORGEN M.1302.8761 - CABLE, POWER
  • Kollmorgen CE03250 - Servostar Servo Drive
  • Kollmorgen K-342 - dual axis automatic autocollimator
  • Kollmorgen TT-4500-1010-B - Inland Motor
  • Kollmorgen S20260-Srs - Synqnets200 Series Servo Drive Forparts
  • Kollmorgen PRDRHP720SND-65 - drive CR06703-R
  • KOLLMORGEN S70362-NANANA - driver
  • Kollmorgen CR06260-000000 - SERVOSTAR CD AC Servo Driver
  • KollMorgen akd-m00306-mcec-D000 - Multi-Axis Master Programmable Drive AKD PDMM
  • KOLLMORGEN S61000 - SERVOSTAR 610 3X230-480V 10A
  • Kollmorgen AKD-P00306-NBCC-0000 - AKD Servo Drive
  • KOLLMORGEN CP306250 - SERVOSTAR SP Servo Drive
  • Kollmorgen MPK411 - controller
  • Kollmorgen S64001 - SERVOSTAR 640, factory-certified
  • Kollmorgen Servotronix Prdr0087006Z-00 - Lvd Servo Drive
  • Kollmorgen AKD-P00306-NAAN-0000 - Servo Drive Controller, 1.2KVA, 240Vac, 3 Phase
  • Kollmorgen MCSS08-3232-001 - MCSS06-3224-001 ServoStar Drives (AS-IS)
  • Kollmorgen CR06250-2D063A - drive
  • YASKAWA SGDP-04APA - SERVOPACK SERVO DRIVE
  • Kollmorgen s62001 - servostar 620-as 14kva 20a ip2o 3x 230-480v
  • Kollmorgen Seidel S60100 - Servostar 601 Servo Drive
  • KOLLMORGEN CR06703-R - HP SERVOSTAR CD CONTROLLER
  • kollmorgen Prdr0052200z-05 - graco inter Servo Component
  • KOLLMORGEN S403AM-SE - drive SERVOSTAR 443M-S
  • YASKAWA SGDP-01APA - SERVOPACK SERVO DRIVE
  • Kollmorgen CE06200-1H348H - SERVOSTAR CD Servo Driver
  • Kollmorgen S71262-NANANA - S700 Servo Amplifier 208Y/120V 480Y/277V
  • Kollmorgen S70302-NANANA-NA - S700 Servo Driver
  • KOLLMORGEN S61401-560 - ATS-SERVOSTAR 614-AS Servo Drive
  • KOLLMORGEN Industrial Drives BDS4A-103J-0001/102A21P - Servo Controller
  • Kollmorgen S71202-NANANA-NA-024 - S700 Servo Driver
  • KOLLMORGEN S70302-NANANA - driver
  • Kollmorgen CR06250 - SERVOSTAR Servo Drive
  • Kollmorgen CE03550 - drive
  • Kollmorgen S71202-NANANA - S700 Servo Driver