Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Analysis of current situation and direction of temperature difference energy development

来源: | 作者:佚名 | 发布时间 :2023-12-06 | 249 次浏览: | Share:

Principle of thermal energy generation

Thermal power generation refers to the use of seawater temperature difference to generate electricity. The temperature difference between the different layers of the ocean is large, and the surface water is generally much warmer than the deep or bottom water. The principle of power generation is that after the warm water flows into the evaporation chamber, the seawater boils into flowing steam or propane and other evaporating gases as a fluid at low pressure, which drives the turbine to rotate and starts the AC motor to generate electricity; The spent steam goes into the condensing chamber, where it is cooled by deep ocean water and condensed, and then recycled. It is estimated that the ocean temperature difference energy can generate about 15×108= 1.5 billion kilowatts a year.

Temperature difference thermal power generation technology is a technology that uses the temperature difference between high and low heat sources, uses low boiling point working fluid as the circulating working medium, and uses high temperature heat source to heat and evaporate the steam generated by the circulating working medium on the basis of Rankine Cycle (RC) to drive turbine power generation. Its main components include evaporator, condenser, turbine and working fluid pump. Through the high-temperature heat source heating the working fluid in the evaporator and evaporation, the evaporating working fluid in the turbine adiabatic expansion, promote the turbine blades to achieve the purpose of power generation, the working fluid after power generation is imported into the condenser, and the heat transfer to the low-temperature heat source, thus cooling and then restored into a liquid, and then through the circulation pump into the evaporator, forming a cycle.

Promising prospect

The ocean is the world's largest solar receiver, with 60 million square kilometers of tropical ocean absorbing an average of the same amount of solar energy per day as the heat contained in 250 billion barrels of oil. According to statistics, as long as the tropical ocean within 20 degrees north and south latitude is fully utilized to generate electricity, the heat released by reducing the water temperature by 1 degree will have 60 billion kilowatts of power generation capacity.

The advantage of thermal energy is that it can provide stable power, and if maintenance is not considered, the power station can work indefinitely. At the same time, the ocean temperature difference can produce hydrogen and return it to the land if there is a surplus of electricity generation.

According to the analysis of China's Marine experts, China's South China Sea islands temperature difference energy utilization has the greatest potential. Data from a doctoral study by Ocean University of Qingdao show that the sea area with a depth greater than 800 meters in the South China Sea islands is about 1.4 million to 1.5 million square kilometers, located in the south of the Tropic of Cancer, with strong solar radiation, surface and shallow water temperatures above 25 ° C, deep water temperatures below 500 ~ 800 meters below 5 ° C, and the temperature difference between surface and deep water is 20 ° C ~ 24 ° C.

According to the preliminary calculation, the theoretical storage capacity of thermal energy resources in the South China Sea is about 1.19×109~1.33×1019 kJ.

It is understood that tidal energy, wave energy and Marine thermal energy are the main forms of Marine clean energy development and utilization, of which Marine thermal energy accounts for about 90% of Marine energy reserves. It is estimated that the temperature difference energy contained in the South China Sea alone can generate 500 million KWH of electricity every year. The successful experiment on the use of ocean temperature difference for power generation not only provides a new solution to the energy supply problem of China's coastal areas, especially islands and offshore oil platforms, but also can be used for off-season vegetable greenhouses, aquaculture and other ancillary development.

"If the ocean temperature difference energy is harnessed, it will be twice as much as the current electricity generation." Recently, Liu Shaohua, vice president of Reignwood Group, revealed to the outside world that the company's first ocean temperature difference power generation project may be started in June 2013 and completed in 28 months.

Current situation of temperature difference energy generation in China

In the field of world temperature difference energy research, the United States and Japan have the most advanced technology, has researched and built a number of temperature difference energy power stations, but are demonstrative, which by the United States Pacific High Technology Research International Center in Hawaii research and construction of open cycle temperature difference energy utilization system, currently maintains the world's net output power of 40 kilowatts ~50 kilowatts of the highest record.

However, compared with foreign countries, China's temperature difference energy development and utilization technology in terms of demonstration scale and net output power, there is still a significant gap. Dr. Qingdao Ocean University's research shows that the ocean temperature difference power generation sea also faces the following problems:

The first is the pipe material. In practice, to generate electricity on a meaningful scale, the surface and deep water must be circulated, and the pipeline must withstand enormous atmospheric pressure in the deep sea, the pressure of constantly oscillating ocean currents, and frequently changing water temperatures.

According to Marine experts, a 10-megawatt plant of this kind is expected to require a large pipe with a diameter of 13 feet. For a plant of 100 megawatts or more, it is expected to be 33 feet wide in diameter and extend 1,000 meters underwater, which is almost as wide as a New York City subway tunnel and two and a half times as tall as the Empire State Building.

Second, the pipeline must be produced on site. A 3,200-foot-long, 33-foot-wide pipe made in a factory, towed into the ocean by rail or barge, and sunk into the water is not only a transportation challenge, but also difficult to lift to the right Angle and sink to the right depth. Therefore, the platform needs to be built at sea first - able to withstand storms, ocean currents, etc. - and then the pipeline is manufactured on site.

Third, the flow and circulation of water in the deep-sea field, and the construction of large-scale facilities, will inevitably affect the Marine ecological environment, such as the risk of Marine life being sucked into the pipeline.

The advantages and disadvantages of temperature difference power generation

Advantages: 1. There is no need for mechanical moving parts in the conversion process, no need for additional drive and transmission system, so the structure is compact, no vibration and noise. 2. In the presence of a small temperature difference, the heat energy can be directly converted into electricity, and the heat energy can be used in a wide temperature range (300K-1400K) by selecting the right type of semiconductor material. 3. Easy installation and use, easy control and maintenance, long-term maintenance free work. Small size, light weight, making it easy to carry, transport and maintenance. 4. Safe and pollution-free, there is no gaseous or liquid medium in thermoelectric materials, and there is no waste water, waste gas and other pollutants discharged in the energy transformation process, which is a near-zero emission energy material.

Disadvantages: The biggest difficulty is that the temperature difference is too small, the energy density is too low, the key to the temperature difference energy conversion is to strengthen heat and mass transfer technology, low power generation efficiency, currently generally not higher than 40%.

outlook

The research direction of future power generation technology is to find materials with higher thermoelectric advantages in a larger range, and improve efficiency under the most matched conditions. Due to its unique advantages, temperature difference power generation technology has shown a good application prospect in the aerospace and military fields, and as a green and environmentally friendly power generation method, its application in the civilian field has also developed rapidly in recent years. Although due to materials, technology and other reasons, with development, temperature difference energy will give greater play to its advantages in low-grade energy utilization.


  • GE DS200DCFBG2BNC MRP569662 DC Feedback Board
  • GE IC695CPE400-ABAB Controller
  • GE DS200DCFBG2BNC MRP433745 Drive Control Board
  • GE DS200DCFBG2BNC MRP420024 DC Feedback Board
  • GE IS200PPPBH2CAA power module
  • GE IS210MACCH2AGG Compact Controller
  • GE IS200AEPAH1AFD Printed Circuit Board
  • GE IS200AEPAH1ACB redundant power module
  • GE IS200WREAS1ADB Relay Output Module
  • GE IS200AEPAH1AHD Printed Circuit Board
  • GE IS200WEMAH1AEA Wind Energy Main Assembly
  • GE IS210MACCH1AGG Turbine Control Module
  • GE IS230TNRLH1B Terminal Base Station Relay Module
  • GE DS200PCCAG1ACB Power Connection Card
  • GE DS200SI0CG1AEA Instant Overcurrent Card
  • GE DS200SHVMG1AGE servo valve interface module
  • GE DS200SI0CG1A6A Input/Output Module
  • GE DS200RT8AG3AHC Programmable Logic Controller
  • GE VMICPCI-7632-03310 IS215UCCAH3A 350-657362-003310J Rack mounted Input/Output Module
  • GE WEA13-13 2508-21001 Embedded Digital Module
  • GE WES5120 2340-21004 Controller Main Module
  • GE WES5120 2340-21006 on-site control host
  • GE WESDAC D20ME 18-MAR-13 Excitation Control Module
  • GE D20 EME 27-APR-13 Input/Output Module
  • GE D20 EME 2400-21004 Substation Controller
  • GE SR745-W2-P1-G1-HI-A-L-R-E Transformer Protection Relay
  • GE SR745-W2-P1-G1-HI-A-L-R Transformer Management Relay
  • GE IS230TNDSH2A Independent Output Relay Module
  • GE IS200TDBSH2ACC Terminal Module
  • GE PMC-0247RC-282000 350-93750247-282000F Disk Drive
  • GE VMIVME-5576 high-speed fiber optic reflective memory
  • GE 760-P1-G1-S1-LO-A20-R-E feeder management relay
  • GE 760-P1-G1-S1-LO-A20-R 760 Series Management Relay
  • GE 760-P5-G5-S5-HI-A20-R-E Motor Management Relay
  • GE IS200AEPAH1BKE IS215WEPAH2BB Printed Circuit Board
  • GE IS210BPPCH1AEC Programmable Monitoring System
  • GE WESDAC D20ME II Remote Terminal Unit (RTU) Main Processor Card
  • GE IC693DSM302-AE Discrete Output Module
  • GE IS220PRTDH1A 336A4940CSP6 temperature sensor input module
  • GE IS420ESWBH3AX Ethernet Switch
  • GE EVPBDP0001 EVPBDP032 output module
  • GE V7668A-131000 350-93100076668-131000 B Control Module
  • GE IS200SPROH1AAB MRP663860 Turbine Protection Relay
  • GE VG5SK8I052311 PM0N2000 Digital Input Module
  • GE MVR1600-4601 air-cooled rectifier module
  • GE CT11T7F10PN1 PMC676RCTX V2.3 01 16 C1145 CR11 V2.X Network Interface Card
  • GE IS215UCVHM06A IS200PMCIH1ACC Controller
  • GE IC695CPU315-BB Programmable Logic Controller
  • GE WES5120 5120-1506 High Performance Field Controller
  • GE D20-PS LFDSC143-4000 processor
  • GE 8811-IO-DC 8811-IO-DC-01 Digital Input/Output Module
  • GE VMIVME-7750 VMIVMME-7750-834 350-02775-834 D Bus Interface Module
  • GE VMIVME-7750 VMIVMME-7750-760000 350-027750-76000 N Bus Processor
  • GE IS210BPPBH2BMD redundant power module
  • GE IS220PDIAH1A 336A4940CSP1 Discrete Input Module
  • GE IC698CMX016 VMIVME-5567-000 350-005567-000 Industrial Module
  • GE V7768-320000 350-9301007768-320000 A0 Controller Module
  • GE IS215VCMIH2CA IS200VCMIH2CAA Communication Interface Board
  • GE IS215UCVGM06A IS215UCVGH1A VMIVMME-7666-11000 Serial Communication Module
  • GE SR745-W3-P5-G5-HI Transformer Protection Relay
  • GE IS220PDIIH1B 336A5026ADP1 Input/Output Module
  • GE IS200SDIIH1ADB MRP683026 Contact Input Isolation Terminal Board
  • GE WESTEM D20 M++CNC System
  • GE SR745-W2-P1-G1-HI-E-H Generator Relay Protection Device
  • GE SR469-P5-HI-A20-H motor protection relay
  • GE IS200TDBTH6ACD gas turbine control system module
  • GE WESDAC D20 C Combination Module
  • GE IC698CMX016 Control Memory Switch Module
  • GE SRPE60A 40 rated plug
  • GE 94-164136-001 motherboard control board
  • ABB PCD237A101 3BHE028915R0101 excitation control module
  • ABB XZC826A102 3BHE036348R0102 control module
  • ABB SAFT183VMC Safety Monitoring and Control Module
  • ABB LD 810HSE EX 3BSE091722R1 fieldbus link equipment
  • ABB RED615 HCDCACADAAHC2BNN11E Line Differential Protection and Control
  • ABB UFC760BE41 3BHE004573R0141 Industrial Computer Board
  • ABB 1TGE120011R2200 Motor Feed Control Unit
  • ABB PM865 3BSE030193R1 Compact Programmable Controller
  • ABB MVR 0.44-10KA high-power motor control module
  • ABB AO810 Input/Output Module
  • ABB SPAU341C1-AA RS488003-AA numerical protection repeater
  • ABB DSTA131 2668180-48/2 Programmable Logic Controller
  • ABB COM00012RAA005844A0004J2RAA005696N Control Panel Module
  • ABB MR7557891MRS050640C power relay
  • ABB 2RCA025057A0001R safety relay
  • ABB 2RCA013892A0003H power relay
  • ABB 2RCA013655A0001H power relay accessories
  • ABB 07KT94-98 controller
  • ABB 1MRK002247 Apr04 Transformer Module
  • ABB UNS0884a-v1 3BHE004385R0001 current sensor
  • ABB WMDOLT2-A75 (65KA) 6E 1TGE106812P0001 Input and Output Board
  • ABB Uras26 F-No. 3.346368.0 A-No 0240462201/2030 Gas Chamber Detector
  • ABB UFC911B101 3BHE037864R0101 control board
  • ABB TU841 3BSE020848R1 Termination unit for 1+1 TB840
  • ABB REF541KM115AAA relay feeder protection
  • ABB NINT-71C main circuit interface board
  • ABB LS14250 lithium battery
  • ABB ICSF08D1 FPR3323101R1012 24VDC high-speed counter
  • ABB DO814 Input/Output System
  • ABB 769111B gas chamber detector
  • ABB CM10/00MU1E0/STD Process Controller
  • ABB 769154 A filter element
  • ABB 769137 C 13CO2-10% 0746919 E detector
  • ABB 0769143 A Sample cell (Al), 175 mm
  • ABB 0002-07-2-000001-01 BMXS Scientific Module (ADC)
  • ABB CM15/000S0E0/STD Universal Process Indicator
  • ABB BSD0750 servo drive
  • ABB CI854BK01 Communication Interface Module
  • ABB XVC772A102 3BHE0322285R0102 circuit board
  • ABB AI04 Input/Output System
  • ABB TU847 module terminal unit
  • ABB TB807 module bus terminator
  • ABB PP877K control panel
  • ABB AO845A eA Analog Output Module
  • ABB SD822 power supply equipment
  • ABB 3BHB006716R0277 SYN5302A-Z.V277 synchronizer
  • ABB GFD233A103 3BH02294R0103 Controller
  • ABB 129740-002 134177-001 Intelligent I/O Module
  • ABB XUD194 3BHE018137R0001 AC800PEC High Performance Controller
  • ABB T3N225 Circuit Breaker
  • ABB A30-30-10RT three pole AC contactor
  • ABB SYN5302A-Z, V217 3BHB006716R0217 digital synchronizer
  • ABB NBIO-31 3BSE011337R1 I/O and Expansion Control Module
  • ABB 5SHX1960L0006 3BHB016120R0002 3BHE019719R0101 GVC736BE101 High Voltage Inverter Module
  • ABB PPC905AE101 3BHE014070R0101 control module
  • ABB REF615E_E HBFHAEAGNBA1BNN1XE digital feeder protection relay
  • ABB XVC770BE101 3BHE02103R0101 circuit board module
  • ABB 3BHL000986P7001 redundant DC power supply unit