Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

There is still a long way to go in understanding life

来源: | 作者:佚名 | 发布时间 :2023-12-07 | 246 次浏览: | Share:

Explore, let human beings live healthy, happy and quality lives

Liu Ying, a professor at Peking University's School of Future Technology, said: "I am very interested in life. I am curious about what is going on inside the human body all the time, and I want to understand ourselves."

Liu Ying specializes in cell biology, studying human metabolism and aging. "Cells are the most basic structural and functional units that make up life. Life is too complex, let's first study the things inside the cell. Study how a cell senses changes in its environment, changes in the levels of energy or nutrients it can use. When we eat a full meal, proteins break down into amino acids, and cells sense these nutrients and cleverly start anabolism, storing up our excess, surplus nutrients. When the cells are hungry, they sense the lack of energy and material in the environment and break down what they have stored to provide energy."

Liu believes it is crucial to study how cells adapt to their surroundings. "Many cancer cells can also continue to grow in an environment with limited nutrients, resulting in excessive cell proliferation and division. So when we do research, we find that some genes are closely related to the development of cancer. In addition, changes in the metabolic state of cells are also closely related to aging. "It's very interesting that people can slow down aging with moderate caloric restriction."

In 1865, Mendel published the hypothesis of the law of inheritance based on the pea hybridization experiment, and genetics was born. Subsequently, genetics and evolution combined to give birth to molecular biology, recombinant DNA technology. In 1990, the Human Genome Research Project was launched. By 2003, scientists had completed the determination of all 3 billion pairs of base sequences of the human genome, and life science was believed to have entered the era of post-genome and proteomics.

It took more than 100 years for human beings to complete the description of the whole face of the genome, which changed our view of life, so that we can rethink what life is, and see a clearer new picture of life.

But human beings are still powerless over "life" in many cases - from cell research to the entire field of life sciences, the understanding of life is still based on limited genetic information. Scientists have crossed the barrier of limited genomes in an attempt to uncover why life behaves in an infinite way of development and differentiation.

"Some time ago, I saw a video where someone said that the science of life is now 90 percent of the way to understanding life." Professor Yang Maojun of the School of Life Sciences at Tsinghua University does not agree: "According to my personal understanding and the law of scientific research, the cognition of life science is still in its infancy and cannot be quantifiable." If I had to quantify it, I'd say less than 1%. Knowledge is like a point, with the accumulation of knowledge, as the point expands into a circle, the more unknown knowledge outside the circle is exposed to, unknown knowledge is infinite, but the knowledge we know is limited, compared with infinite, I really can not define the extent of our understanding of life."

So what can the life sciences do for us? Yang Maojun said that the question should be asked, what do we humans want the life sciences to do for us? "A healthy, happy and quality life, of course. The development of life science in these years is obvious to all. Take the average life expectancy of China's population as an example, it was 35 years old in 1949, 57 years old in 1957, 68 years old in 1981, 75 years old in 2010, and 77.3 years old in 2019. In the past, we often said that life is rare in the past 70 years, and now the elderly over 70 years old are everywhere. This is the most intuitive manifestation of the rapid development of life science in China over the years."

The challenge is that the understanding of how living organisms work is far from sufficient

Scientific research is always exploring the "unknown", but often there are still many "unknowns" in the "known".

In Liu Ying's view, the more research in the field of life science, the more reverence for life, "life is really very subtle, you can't imagine how it can be so smart, so subtle to regulate every step."

But "the more I study, the more I know about life, the more ignorant I find myself," and "some conventional concepts or phenomena have been constantly revised and improved in recent years."

For example, the Warburg effect suggests that cancer cells provide energy and produce lactic acid primarily through glucose degradation (breaking down glucose). But this way of providing energy, it produces very little energy. Because most normal cells get more than 90% of their energy from mitochondria.

Why do cancer cells go through this pathway of sugar degradation? According to Liu Ying, the previous interpretation believed that when cancer cells grow into a large tumor, many cells are crowded together, especially the cells in the middle of the tumor, and cannot access too much oxygen, so there is no way to use mitochondria to provide energy.

  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module
  • GE IS410STCIS2A IS400STCIS2AFF Industrial Control Module
  • GE DS200DCFBG2BNC DS200DCFBG1BNC DC Feedback Board
  • GE VME5565 VMIVME-5565-11000 332-015565-110000 P Reflective Memory
  • GE VMIVME-7807 VMIVMME-01787-414001 350-00010078007-414001 D module
  • GE IS220PDOAH1A 336A4940CSP2 Discrete Output Module
  • GE VMIVME-4150 Analog Output Module
  • GE WESDAC D20 PS Industrial Power Module
  • GE 369B1860G0031 servo drive module
  • GE 369B1859G0021 Input/Output Module
  • GE 208D9845P0008 Motor Management Relay
  • GE IS420UCSCH1A-F.V0.1-A Independent Turbine Controller
  • GE D20EME10BASE-T 820-0474 Ethernet Interface Module
  • GE DS200DCFBG2BNC MRP445970 DC Feedback Board
  • GE IC800SSI228RD2-EE servo motor controller
  • GE IS200JPDMG1ACC S1AT005 Digital Input/Output (I/O) Module
  • GE IS200TSVCH1AED servo input/output terminal board
  • GE IS200TTURH1CCC S1DF00Z Terminal Turbine Plate
  • GE IS200TSVCH1ADC S1CX01H servo input-output board
  • GE IS200TRPGH1BDD S1C5029 Trip Solenoid Valve Control Board
  • GE IS220YAICS1A L Analog Input/Output Module
  • GE UCSC H1 IS420UCSCH1A-F-VO.1-A Controller Module
  • GE UCSC H1 IS420UCSCH1A-B Communication Processing Module
  • GE IC697VDD100 Digital Input Module
  • GE V7768-320000 3509301007768-320000A0 Controller Module
  • GE IS410TRLYS1B Relay Output Module
  • GE IS415UCVGH1A V7666-111000 VME Control Card
  • GE IC800SSI216RD2-CE servo motor controller
  • GE VMIVME-5565-010000 332-01565-010000P Reflective Memory
  • GE IC695ALG508-AA Analog Input Module
  • GE IC660EPM100J Power Monitoring and Control Module
  • GE RS-FS-9001 362A1052P004 Redundant Fan System Module
  • GE IS220UCSAH1AK independent processor module
  • GE 369-HI-0-M-0-0-0-E Motor Management Relay
  • GE CIFX50-C0 interface board
  • GE SR469-P5-H-A20-T Motor Management Relay
  • GE WES5120 2340-21005 power module
  • GE WES5120 2340-21003 Control Module
  • GE D20MIC10BASE-T 820-0756 Ethernet Module
  • GE WES13-3 5167-001-0210 Mechanical Relay Output Module
  • GE WES13-3 2508-21001 Control Board Module
  • GE D20ME 526-2005-216943 Input/Output Module